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1 Measure Theory (The Basics)

Definition 1 (Basic measure theoretic definitions).

• A σ-algebra on a set Ω is the collection of all possible outcomes or all subsets of a set Ω.

• Given a probability space, (Ω (set),F (σ-alg.), p (prob measure)), a random variable is a measurable
map from the set to the real numbers: Ω → R.

• The distribution of a random variable X is defined as pX = p ·X−1, meaning the probability measure
applied to the inverse map of the random variable (the set). The distribution of a random variable is
a measure on R.

• The Radon-Nikodym theorem says that under certain conditions, any measure can be described
using another measure defined on the same space by assigning a density to each point in space and
integrating over the measurable subset of interest. The strategy is like so:

ν(A) =

∫
A

fd(µ)

The function f , the Radon-Nikodym derivative, is defined as dν
dµ , the derivative of one measure

with respect to another.

• The probability density function is the Radon-Nikodym derivative of the distribution with respect
to the Lesbegue measure on R or Rk: fX = dPx

dλ .

The dominated convergence theorem (DCT) is a very useful device that allows us to link pointwise
convergence of a sequence of functions to convergence of the integral of the sequence of functions. Essentially
provides conditions under which we can push the integral inside the limit.

Theorem 1 (DCT).
Suppose fn → f pointwise within a measurable space (Ω,F , µ) (of which a probability space is a special
example). Suppose fn is dominated by some integrable function, i.e.,

|fn(x)| ≤ g(x) s.t.

∫
Ω

|g(x)| dµ <∞

for all n and x ∈ Ω. Then:

lim
n→∞

∫
S

|fn − f |dµ = 0

≡ lim
n→∞

∫
S

fndµ =

∫
S

fdµ

Note: this result is very useful in probability theory, because it allows us to swap limits and expectations.

SupposeXn
p→ X are random variables and Pr(|Xn| < Y ) for some other random variable Y with E(Y ) <∞.

Then:

lim
n→∞

E(Xn) = E(X) = E
(
lim
n→∞

Xn

)
It also allows us to swap integration (expectation) and differentiation.
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2 Decision Theory

Decision theory is a general framework that unites hypothesis testing and estimation. Based on a data
realization x, we can take an action a in the action space A.

1. Point estimation example: suppose θ = (µ, σ)2, and objective is to estimate Ψ(θ) = µ of a N(µ, σ2)
random variable. The action space may be A = R. A typical loss function is L(θ, a) = |θ − a|2

2. Hypothesis testing example: suppose we want to test whether θ ∈ Θ0 or θ ∈ Θ1. The action space,
A = {0, 1}, denotes the choice of θ ∈ Θa. A typical loss function could be the modified 0-1 loss:
L(0, θ) = ℓ0IΘ1

(θ) and L(1, θ) = IΘ0
(θ)

2.1 Basic terminology

Definition 2 (Decision rule, loss, risk).

• A decision function, D : X×A → [0, 1], D(a, x) = d(a|X = x), is a probability of action A conditional
on X = x. Decision functions/rules can be either stochastic or deterministic (with probabilities 0/1)–
we denote the class of all stochastic decision rules D, and deterministic decision rules T .

1. Note: a particular decision is a random quantity that depends on variability in the data X and
variability in the decision a.

• The loss for a given action a, L(a, θ), describes the quality of a decision at θ.

• The risk of a decision rule D at θ is the expected loss, R(D, θ) ≡
∫
X
∫
A L(a, θ)D(a|x)dPθ(x). Notice

that the risk is the average loss, marginal over the two layers of randomness: the randomness of the
data and randomness of the decision. Smaller risk indicates better performance of a decision rule.

Example 1 (Neyman-Pearson hypothesis Testing: constrained minimax). We can consider hypothesis test-
ing under the Neyman-Pearson paradigm as a constrained minimax approach. Consider testing whether
θ belongs in Θ0 or Θ1, with loss function L(0, θ) = ℓ0IΘ1(θ) and L(1, θ) = IΘ0(θ). ℓ0 > 1 implies making T2
errors more costly than T1 errors. The risk:

R(θ,D) =

∫ 1∑
a=0

L(a, θ)D(a|X)dPθ(x)

=

∫
[ℓ0Iθ1(θ)D(0|X) + Iθ0(θ)D(1|X)] dPθ(x)

=

{
Pθ(declaring θ ∈ Ω1) = type 1 error if θ ∈ Θ0

ℓ0Pθ(declaring θ ∈ Ω0) = ℓ0 × type 2 error if θ ∈ Θ1

The Neyman-Pearson paradigm advocates choosing decision rule D∗ s.t.

sup
θ∈Θ1

R(D∗, θ) = inf
D∈D

sup
θ∈Θ1

R(D, θ) subject to constraint sup
θ∈Θ0

R(θ,D) ≤ α

2.2 Bayesian Inference
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Definition 3 (Bayes risk, Bayes rule).
In the Bayesian paradigm, we define a prior distribution Π on the parameter space Θ. The Bayes risk of
a decision rule D is the expected risk of D over the the prior on θ:

r(D,Π) =

∫
R(D, θ)dΠ(θ)

A Bayes rule, DΠ is optimal with regard to the Bayes risk

r(DΠ,Π) = inf
D∈D

r(D,Π) = inf
D∈D

EΠ

[∫
A
L(a, θ)D(da|x)

∣∣∣∣∣X = x

]

Definition 4 (Prior, Posterior, Kernel, Conjugate Prior). Let Π be a prior distribution on Θ. Let p(X|θ)
and π(θ) be associated densities. The posterior distribution of θ|X = x is defined as:

p(θ|x) = p(x, θ)

p(x)

=
p(x|θ)π(θ)∫

Θ
p(x|θ′)Π(dθ′)

The kernel of the posterior is a function f such that the posterior distribution factorizes into a component
that depends on X only, c(X), and f , a component that depends on both X and θ:

p(θ|x) = c(x)f(x, θ) ∝ f(x, θ)

Importantly, the kernel uniquely determines the distribution.
A conjugate prior is a prior that belongs to a family PΠ, and ensures for almost all x, the posterior

distribution P (θ|x) also falls in PΠ: the posterior belongs to the same family as the prior.

Strategy 1 (Finding the posterior). One can find the posterior by setting it proportional to the conditional
likelihood times the prior, and factoring to identify the kernel. For example, suppose X|θ ∼ Pois(θ) and
θ ∼ Gamma(α, β)

p(θ|x) ∝ p(x|θ)× π(θ)

= e−θ
θx

x!
× βα

Γ(α)
θα−1e−βθ

=
βα

Γ(α)x!︸ ︷︷ ︸
c(x)

θx+α−1e−(β+1)θ︸ ︷︷ ︸
f(x,θ)

∝ θx+α−1e−(β+1)θ

Which is the kernel of a Gamma(α+ x, β + 1), so θ|x ∼ Gamma(α+ x, β + 1).
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Theorem 2 (Existence of deterministic Bayes Rules (Thm 1.3.2)).
If L(a, θ) is convex for all θ ∈ Θ, D is unrestricted, A is a convex set, and there exists a Bayes rule DΠ ∈ D,
then there exists a deterministic Bayes rule – i.e., a Bayes rule D(·, x) that places point mass at ax ∈ A.

Proof: by assumption, DΠ ∈ D is a Bayes rule. Choose D1(·|x) to be a distribution that places a point
mass at

∫
aDΠ(a|x), the expected action under DΠ(·|x). Clearly, D1 is deterministic because it is a point

mass. D1 is a Bayes rule because, via Jensen’s inequality:

L(a, θ)D1(da|x) = L

(∫
aDΠ(da|x), θ

)
≤
∫
L(a, θ)DΠ(da|x)︸ ︷︷ ︸

Jensen

≤
∫
L(a, θ)D(da|x)

Example 2 (Point estimation with squared error loss).
Suppose our objective is to estimate Ψ(θ) with squared error loss L : (a, θ) → {a− ψ(θ)}2.

Let fx be the Bayes risk function:

fx : a→ E[(a−Ψ(θ))2|X = x]

Then the Bayes rule elects the action that minimizes the Bayes risk: DΠ : x→ argmin
a∈A

fx(a).

If we differentiate the Bayes risk function:

d

da
fx(a) = 2(a− E(Ψ(θ)|X = x))

d

da
fx(a) = 0 =⇒ argmin

a∈A
fx(a) = E(Ψ(θ)|X = x)

Thus, the posterior mean is the Bayes rule under a squared loss.
For example, suppose:

X|θ ∼ Poisson(θ) θ ∼ Gamma(α, β)

=⇒ θ|X = x ∼ Gamma(α+ x, β + 1)

To estimate θ using mean squared error, the Bayes rule is the posterior mean, which is just a convex
combination of the MLE and prior mean:

TΠ : x→ α+ x

β + 1
=

β

β + 1
(α/β) +

1

β + 1
x

Example 3 (Point estimation with absolute deviation loss).
Suppose our objective is to estimate Ψ(θ) with squared error loss L : (a, θ) → |ψ(θ)− a|.

Notice that d|a|
da = sign(a). We want to find TΠ : x→ argmin

a∈A
E
[{

|ψ(θ)− a|
∣∣X = x

}]
.

When we differentiate we obtain:

d

da
fx(a) = E [sign(ψ(θ)− a)] = 0

=⇒ a = median(ψ(θ)|X = x)
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2.3 Minimax framework

The minimax framework concerns itself with trying to find the decision rule with the smallest maximal
risk. There are two key ways to construct minimax estimators, 1) via information theoretic approaches and
2) by building connections to Bayes rules. We focus on the second strategy.

Definition 5 (Minimax).
The minimax framework posits that we should prefer decision rules with lower maximal risk. A minimax
rule is optimal with respect to the maximal risk criterion, meaning it achieves the smallest maximal risk
over all decision rules:

sup
θ∈Θ

R(D∗, θ) = inf
D∈D

sup
θ∈Θ

R(D, θ)

Definition 6 (Least favorable prior).
A prior is a least favorable prior if it (and its associated Bayes rule) yields the maximum Bayes risk:

r(DΠ∗ ,Π∗) = sup
Π

r(DΠ,Π)

The following theorem establishes a connection between Bayes rules and Minimax rules.

Theorem 3 (Theorem 1.4.2).
If Π and the Bayes rule DΠ have a bayes risk (optimal wrt Π) equal to the maximum risk of DΠ over all
θ ∈ Θ (maximmal), i.e.,

r(DΠ,Π) = sup
θ

R(DΠ, θ)

Then,

1. DΠ is minimax.

2. If DΠ is a unique Bayes rule, then DΠ is the unique minimax.

3. Π is least favorable.

Proof :

1. Consider a general D ∈ D, then:

sup
θ∈Θ

R(D, θ) ≥
∫
Θ

R(D, θ)Π(dθ) (Max > average)

≥
∫
Θ

R(DΠ, θ)Π(dθ) (Dπ optimal)

= sup
θ∈Θ

R(Dπ, θ) (Assumed condition)

8
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2. If Dπ is unique, then
∫
R(D, θ)Π(dθ) >

∫
R(Dπ, θ)Π(dθ) =⇒ sup

θ∈Θ
R(D, θ) > sup

θ∈Θ
R(Dπ, θ), showing

Dπ is unique minimax.

3. To prove Π is least favorable, consider another prior Π′:

r(DΠ′ ,Π′) ≤ r(DΠ,Π
′) (Bayes rule optimal)

≤ sup
θ∈Θ

R(Dπ, θ) (Max > average)

= r(DΠ,Π) (Theorem condition)

Theorem 4 (Corollary 1.4.3).
If Π is a prior s.t. R(DΠ, θ) is constant, i.e., R(DΠ, θ) does not depend on θ, then DΠ is minimax.

Proof : trivial. If DΠ has constant risk than r(DΠ,Π) = sup
θ∈Θ

R(DΠ, θ), so we can apply Theorem 1.4.2 to

obtain minimaxity of DΠ.

By defining (least favorable) sequences of priors and taking the limit, we can begin to explore behavior
of Bayes estimators under improper priors.

Definition 7 (Least favorable sequence). Let {Πk; k = 1, 2, . . .} be a sequence of priors on Θ and let:

r0 := lim inf
k→∞

r(DΠk
,Πk)

A sequence is a least favorable prior sequence if ∀Θ:

r(Dπ, π) ≤ r0

We can generalize Theorem 1.4.2 to the setting of prior sequences:

Theorem 5 (Theorem 1.4.7).
Suppose {Πk} is a prior sequence and let r0 be as defined in Definition 7. If D ∈ D satisfies:

sup
θ∈Θ

R(D, θ) = r0

Then D is minimax, and {Πk} is a LFP sequence.

Proof : Consider a general decision D′ ∈ D then for all k = 1, 2, . . .:

sup
θ

R(D′, θ) ≥
∫
Θ

R(D′, θ)Πk(dθ)

≥ r(DΠk
,Πk)

9
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Since this was true ∀k:

sup
θ

R(D′, θ) ≥ lim inf
k→∞

r(DΠk
,Πk)

= r0

= sup
θ∈Θ

R(D, θ)

Thus, D is minimax. To show that {Πk} is a LFP sequence, consider any Π:

r(DΠ,Π) ≤ r(D,Π)

≤ sup
θ

R(D, θ) = r0

Example 4 (Sample mean is Minimax under normal mean model).
The general proof idea is to show that the risk of the sample mean is constant wrt θ, then define a prior
sequence that achieves the bayes risk equal to the constant risk asymptotically with k. Then we can apply
Theorem 1.4.7 to show minimax.

X1, . . . , Xn
iid∼ N(θ, σ2) with σ2 known (with squared error loss). We claim X̄n is minimax. For T : x→

x̄n, R(T, θ) = σ2/n which is constant wrt θ, implying:

sup
θ

R(T, θ) =
σ2

n

To show that X̄n is minimax via Theorem 1.4.7, we need to find a prior sequence such that r0 :=

lim
k→∞

r(DΠk
,Πk) =

σ2

n .

Let Πk := N(0, k). Under this model, the posterior distribution is:

θ|X = x ∼ N

(
x̄nn/σ

2

1/k + n/σ2
,

1

1/k + n/σ2

)
=⇒ TΠk

: x→ x̄nn/σ
2

1/k + n/σ2
is Bayes

Let Ek is the expectation with respect to θ ∼ Πk and X|θ ∼ N(θ, σ2). Then asymptotically:

r(TΠk
,Πk)− Ek

[
(x̄n − θ)

2
]
= Ek

[(
x̄nn/σ

2

1/k + n/σ2
− θ

)2
]
− Ek

[
(x̄n − θ)

2
]
k→∞−→ 0

Thus lim
k→∞

r(TΠk
,Πk) = lim

k→∞
Ek
[
(x̄n − θ)

2
]
= σ2

n = r0.

But we had just showed that sup
θ

R(T, θ) = σ2

n = r0, implying that T : x → x̄n is minimax by Theorem

1.4.7.

Theorem 6 (Lemma 1.4.9).
Let P1 ⊂ P2 denote two models. If D1 is minimax over P1 and:

sup
P∈P1

R(D1, P ) = sup
P∈P2

R(D1, P )

10
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Then D1 is also minimax over P2.

Proof: STAC that D1 is not minimax over P2, then there exists D2 ∈ D s.t. D2 achieves a smaller worst
risk in P2. Then:

sup
P∈P1

R(D2, P ) ≤ sup
P∈P2

R(D2, P ) (b/c P1 ⊂ P2)

< sup
P∈P2

R(D1, P ) (by D1 not minimax)

= sup
P∈P1

R(D1, P ) (by condition (ii) in theorem)

But this shows that D1 is not minimax over P1, which is a contradiction. Thus, D1 must be minimax over
P2.

Example 5 (Sample mean minimax under bdd variance).
If we consider P2 = {P = Qn, support(Q) ⊂ R,VarQ(X) ≤ σ2}, then X̄n is minimax wrt P2. This is because

R(T, P ) = σ2

n which is independent of P2, therefore, the max risks are equal between P1 and P2.By Lemma
1.4.9, X̄n is also minimax over P2.

2.4 Admissibility

Admissibility is the ”lowest-bar” criterion for an estimator or decision – essentially, there does not exist
another rule that is uniformly as good or better based on the risk criterion.

Definition 8 (Admissibility).
A minimal requirement for a good decision rule is that there does not exist a uniformly better rule. A rule
D is called inadmissible if there exists another rule D̃ s.t.

R(D̃, θ) ≤ R(D, θ) for all θ ∈ Θ, and

R(D̃, θ̃) < R(D, θ̃) for some θ̃ ∈ Θ

The rule is called admissible otherwise.

Definition 9 (Uniqueness of Bayes and Minimax Rules).
For a prior Π, a rule DΠ is unique Bayes if a rule is Bayes iff it is equal to DΠ a.e. Pθ.
A rule D∗ is unique minimax if a rule is minimax iff it is equal to D∗ a.e. Pθ.

Theorem 7 (Admissibility of unique Bayes/minimax rules: Theorems 1.5.2-1.5.4).
Any unique Bayes/minimax rule is admissible.

11
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Proof: 1. STAC that DΠ is unique Bayes but not admissible. Then ∃D ∈ D s.t.

R(D, θ) ≤ R(DΠ, θ) ∀ θ ∈ Θ

R(D, θ∗) < R(DΠ, θ∗) for some θ∗ ∈ Θ

However, this implies r(D,Π) ≤ r(DΠ,Π) =⇒ r(D,Π) = r(DΠ,Π) since the Bayes rule is optimal. However,
this implies that the Bayes rule is not unique, yielding a contradiction, and showing that a unique Bayes
rule must be admissible.
2. STAC that D∗ is unique minimax but not admissible. Then ∃D ∈ D s.t.

R(D, θ) ≤ R(DΠ, θ) ∀ θ ∈ Θ

R(D, θ∗) < R(DΠ, θ∗) for some θ∗ ∈ Θ

But since D∗ is minimax (sup
θ

R(D∗, θ) = inf
D

sup
θ

R(D, θ)), sup
θ

R(D, θ) = sup
θ

R(D∗, θ), because D∗

achieves optimal max risk and D is uniformly as good or better by the risk criterion. However, this yields a
contradiction, because we showed two distinct rules yield the same minimax risk despite assuming D∗ was
unique minimax. Thus, we conclude D∗ is unique minimax.

Unique Bayes/minimax rules guarantee admissibility! How do we find these rules? Some helpful theorems
will come in handy!

Theorem 8 (Unique bayes rule: Theorem 1.5.5).
Let Π be a prior and DΠ be the associated Bayes rule. If the following hold:

(i) The loss function is squared error loss

(ii) r(DΠ,Π) <∞

(iii) Pθ << Q (probability measure is absolutely continuous wrt some marginal measure): for any subset
A of the σ-algebra A, Q(A) ≡

∫
Pθ(X ∈ A)dΠ(θ) = 0 =⇒ Pθ(X ∈ A) = 0 for all θ ∈ Θ

Then DΠ is unique Bayes.
Proof left available in paper by Larry Brown.
Addendum: a sufficient condition for item (iii) is that as long as we can find a new measure η (not
necessarily a prob measure) on the measure space, s.t.

Pθ << η AND η << Pθ

Condition (iii) holds. A useful example of this is that the normal distribution is absolutely continuous wrt
the Lesbegue measure and vice versa.

Proof : Fix θ0 ∈ Θ. The goal is to show Pθ0(A) > 0 =⇒ Q(A) > 0. Suppose Pθ0(A) > 0, because lemma
conditions say:

Pθ0 << η =⇒ if η(A) > 0 =⇒ Pθ(A) > 0 ∀ θ ∈ Θ

=⇒ Q(A) =

∫
Θ

Pθ(A)︸ ︷︷ ︸
>0

Π(dθ) > 0

12
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Example 6 (Bayesian normal mean/sample mean is admissible).

X1, . . . , Xn|θ
iid∼ N(θ, σ2) and θ ∼ N(µ, τ2)

We can show that TΠ : x→ (1−Pn) · X̄n+Pn ·µ with Pn := 1/τ2

1/τ2
n/σ

2 ∈ (0, 1) is admissible using Thoerem

1.5.5. (i) is trivial, (ii) follows because optimal, and the Addendum and knowing that Pθ << λ and λ << Pθ
where λ is the Lesbesgue measure and Pθ is N(θ, σ2) shows that it is unique Bayes and therefore admissible.

However, this begs the question of whether the Bayesian normal mean is admissible when Pn = 0, 1.
When Pn = 0, T : x→ µ is admissible because it is a constant estimator that achieves Risk of 0 when the θ
is µ. When Pn = 1, T : x→ x̄n is minimax and admissible, but this requires a rigorous proof.

Proof: Claim: X̄n is admissible in normal mean model. X1, . . . , Xn ∼ N(θ, σ2) where σ2 known and θ ∈ R.
For all rules, we will establish admissibility by proving:

(a) R(T1, θ) ≥ R(T, θ) ∀ θ

(b) there exists θ ∈ Θ for which R(T1, θ) > R(T, θ).

WLOG consider σ2 = 1. Then there exists θ1 ∈ Θ at which:

R(T1, θ1) < R(T, θ1)

Since the risk function is continuous, we can build a δ-bubble around θ1 where the risk difference is greater
than some ϵ:

R(T1, θ) < R(T, θ)− ϵ =
1

n
− ϵ for θ ∈ (θ1 − δ, θ1 + δ)

Let’s specify a prior Πτ ≡ N(0, τ2) and let Tτ := TΠτ be the Bayes estimator wrt this prior. Via some
algebra, we obtain:

r(Tτ ,Πτ )−R(T, θ) =
τ2

1 + nτ2
− 1

n
= − 1

n(1 + nτ2)

Thus,

− 1

n(1 + nτ2)
= r(Tτ ,Πτ )−

1

n

≤ r(T1,Πτ )−
1

n
(B/c optimality bayes rule)

=

∫ [
R(T1, θ)−

1

n

]
Πτ (dθ)

=

∫ [
R(T1, θ)−

1

n

]+
Πτ (dθ)−

∫ [
R(T1, θ)−

1

n

]−
Πτ (dθ) (Splits pos and neg regions)

Recall that for θ1 ∈ (θ − δ, θ + δ), R(T1, θ1) <
1
n − ϵ =⇒ R(T1, θ) − 1

n < −ϵ =⇒
[
R(T1, θ)− 1

n

]−
> ϵ.

Therefore: ∫ [
R(T1, θ)−

1

n

]−
dΠτ (θ) ≥

∫ θ1+δ

θ1−δ

[
R(T1, θ)−

1

n

]−
dΠτ (θ)

≥ ϵ

∫ θ1+δ

θ1−δ
dΠτ (θ) = ϵΠτ (θ1 − δ ≤ Θ ≤ θ1 − δ)

Implying: ∫ [
R(T1, θ)−

1

n

]+
Πτ (dθ) ≥ − 1

n(1 + nτ2)
+ ϵΠτ (θ1 − δ ≤ Θ ≤ θ1 − δ) := L(τ)

13
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Note that:

√
2πτL(τ)

τ→∞−→ 2ϵδ

Because −
√
2πτ

n(1+nτ2)

τ→∞−→ 0 by LH rule and
√
2πτΠτ (θ1 − δ ≤ Θ ≤ θ1 − δ) =

∫ θ1+δ
θ1−δ exp

(
− 1

2τ2 θ
2
)

=

2δe−θ
2/2τ2 τ→∞−→ 2δ. Now choose τ0 > 0 s.t.

√
2πτ0L(τ) > δϵ and plug-in:∫ [

R(T1, θ)−
1

n

]+
Πτ (dθ) ≥ L(τ0) >

δϵ√
2πτ0

> 0

We just showed that there exists a θ for which R(T1, θ) > R(T, θ) = 1/n implying that condition (b) holds.
So either T has uniformly lower/equal risk (as in case (a)) or T has a lower risk for some θ (as in case (b))
for a general estimator T1. Thus, T is admissible!

2.5 Inadmissibility of the sample mean in dim ≥ 3

Turns out that the sample mean is inadmissible in higher dimensions under MSE loss, because as the
dimension increases, the distribution’s mass gets pulled further into the tails and the sample mean vector
increasingly deviates from the true mean.

Under X1, . . . , Xn
iid∼ N(θ, σ2Id), Charles Stein proved that T is inadmissible when d ≥ 3 by intro-

ducing an estimator that dominated T under d ≥ 3, the James-Stein estimator.

Definition 10 (James-Stein Estimator). The James-Stein estimator is as follows

T JS : x→

{(
1− (d−2)

n||x̄n||2

)
x̄n if x̄n ̸= (0, . . . , 0)

0, otherwise

Note that it is just a shrinkage of the sample mean estimator towards 0, where shrinkage is controlled by
the dimension, sample size, and ||x̄n||.
Important: despite the observations being independent, the shrinkage property ensures that the estimate
of θj depends on Xk despite Xj being independent of Xk and θj and θk being variationally independent.

Theorem 9 (Stein’s Lemma (Lemma 1.6.2)).

Let Y ∼ N(µ, σ2Id) and let g1, . . . , gd be Rd → R functions such that E
∣∣∣ ∂∂yj gj(y)|y = Y

∣∣∣ < ∞. Defining

g : y → (g1(y), . . . , gd(y)) we have:

E [⟨g(Y ), Y − µ⟩] = σ2E[∇ · g(Y )] where ∇ · g(Y ) ≡
d∑
j=1

∂

∂yj
gj(y)

Proof: Step 1 is to show for Y ∼ N(µ, σ2) and g : R → R s.t. E(g′(Y )) <∞:

E[g(Y )(Y − µ)] = σ2E[g′(Y )]

14
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Note:

E[g(Y )(Y − µ)] =
1√
2πσ

∫ ∞

−∞
g(x)(y − θ)e−(y−θ)2/(2σ2)dy

=
1√
2πσ

−σ2g(y)e−(y−θ)2/(2σ2)|∞−∞︸ ︷︷ ︸
=0

+σ2

∫ ∞

−∞
g′(y)e−(y−θ)2/(2σ2)dy


= σ2E[g′(y)]

By Fubini’s theorem, multiple integrals over each dimension can be reduced to iterated integrals because
the expected absolute value partial derivatives are all finite (condition required for Fubini’s theorem). This
yields the multivariate result!

Theorem 10 (James-Stein estimator dominates the sample mean). Consider the simplifed setting where
X1, . . . , Xn ∼ N(θ, Id) and the J-S estimator takes the form:

T JS : x→

{(
1− d−2

||x||2

)
x if x ̸= (0, . . . , 0)

0 else

Then we write the risk as:

R(T JS , θ) = E[||τJS(||X||)X − θ||2]
= E[||[τJS(||X||)− 1]X + [X − θ]||2]
= E[||[τJS(||X||)− 1]X||2] + E[||X − θ||2]− 2E[⟨[1− τJS(||X||)]X,X − θ⟩]

= E
[
(d− 2)2

||X||2

]
+R(T, θ)− 2(d− 2)Eθ

[〈
X

||X||2
, X − θ

〉]
The goal will be to show that term 3 is equal to −2E

[
(d−2)2

||X||2

]
which shows that R(T JS , θ) < R(T, θ).

We so via Stein’s Lemma, letting gj : x→ z
||z||2 , we see that:

∇ · g(z) =
d∑
j=1

[
1

||z||2
−

2z2j
||z||4

]
(Quotient rule)

=
d

||z||2
− 2||z||2

||z||4
=
d− 2

||z||2

Thus, the third term is equal to−2(d−2)E(∇·g(y)) = −2(d−2)2E
[

1
||X||2

]
as desired, provingR(T JS , θ) <

R(T, θ) for all θ.

15
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3 Elementary Asymptotics

Asymptotic statistics allows us to evaluate statistical procedures on the basis of increasing sample size
and repeated sampling from the superpopulation.

3.1 Modes of convergence

Definition 11 (Convergence almost surely, in probability, and in distribution). The following definitions
concern a sequence of random variables {Xn}∞n=1 and a random variable X defined on a common probability
space (Ω,F , P ).

Almost surely convergence: a sequence of random variables converges almost surely to X if:

P ( lim
n→∞

||Xn −X|| = 0) = 1 ≡ lim
n→∞

||Xn(ω)−X(ω)|| = 0

Convergence in probability: a sequence of random variables converges in probability to X if:

P (||Xn −X|| > ϵ)
n→∞−→ 0

Convergence in distribution: a sequence of random variables converges in distribution/weakly con-
verges to X iff or all bounded continuous functions f : Rd → R

E[f(Xn)] → E[f(X)] as n→ ∞

Note that boundedness and continuity are essential to the definition of weak convergence.

• Suppose we didn’t require f be continuous. Let Xn = 1/n and let f : a → I(a > 0). E(f(Xn)) → 1
which does not equal E[f(X)] = 0, so Xn would not converge in distribution to 0 despite converging
in every other sense (a.s., in prob).

• Suppose we didn’t require f . to be bounded. Let Xn = n w.p, 1/n and Xn = 0 otherwise. Note
that Xn converges in probability to 0 (b/c the probability mass increasingly gets concentrated at 0
as n → ∞. Let f : a → min(|a|, 1) and g : a → a. Then E[f(Xn)] = 1/n → 0 where the limit

equals E[f(X)] iff X
a.s.
= 0. However if X

a.s.
= 0, E[g(Xn)] → 1 and E[g(X)] ̸= 1. Thus, convergence in

distribution can’t hold despite convergence in prob.

Note in addition that convergence a.s. =⇒ convergence in prob =⇒ weak convergence.

The Portmanteau theorem provides linkage between the many definitions of convergence in distribution!

Theorem 11 (Portmanteau).
Let {Xn}∞n=1 be a sequence of random variables and X be a random variable. TFAE:

1. E[f(Xn)] → E[f(X)] as n→ ∞ for all bounded continuous functions f .

2. For all continuity points t ∈ Rd, P (Xn ≤ t) → P (X ≤ t) as n→ ∞.

3. . . . MANY others

4. Levy’s continuity theorem: for all t ∈ Rd, E[exp(itTXn)] → E[exp(itTX)], convergence in charac-
teristic functions

5. Cramer-Wold device: for all t ∈ Rd, tTXn =⇒ tTX

16
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3.2 Continuous Mapping Theorem and Slutsky’s Theorem

CMT and Slutsky’s theorem allows us to describe the behavior of functions of convergent sequences!

Theorem 12 (Continuous Mapping Theorem). Let Xn be a Rd-valued sequence of random variables and
g : Rd → Rm be continuous at every point of a set C s.t. P (X ∈ C) = 1, the following are valid:

(i) if Xn ⇒ X, then g(Xn) ⇒ g(X)

(ii) if Xn
p→ X, then g(Xn)

p→ g(X)

(iii) if Xn
a.s.→ X, then g(Xn)

a.s.→ g(X)

(iv) if Xn ⇒ X and ||Xn − Yn||
p→ 0, Yn ⇒ X

(v) of Xn ⇒ X and Yn
p→ c, then (Xn, Yn) ⇒ (X, c)

Theorem 13 (Slutsky’s Lemma). Let Xn be a Rd-valued sequence of random variables and Xn ⇒ X. If

the Rd-valued random variable Yn satisfies Yn
p
c for a constant c, then the following are valid

(i) Xn + Yn ⇒ X + c

(ii) Xn · Yn ⇒ c ·X

(iii) Xn/Yn ⇒ X/c if c ̸= 0

3.3 Law of Large Numbers and Central Limit Theorem

Law of large numbers allows us to describe the consistency of the sample mean, while the central limit
theorem yields the asymptotic normal distribution of the sample mean.

Theorem 14 (Law of large numbers). For X1, . . . , Xn
iid∼ P and letting X̄n = 1

n

∑
Xi,

WLLN: if EP |X| <∞, X̄n
p−→ EP [X]

SLLN: if EP |X| <∞, X̄n
a.s.−→ EP [X]

Theorem 15 (Univariate CLT).
For the moment, we assume that the CLT under a univariate parameter drawn iid from a fixed distribution
P . If EP (X2) <∞, then where σ2

P := VarP (X)

√
n(X̄n − Ep[X]) ⇒ N(0, σ2

P )

17
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Example 7 (t-statistics).
The goal is to show that the t-statistic:

√
nX̄n/Sn ⇒ N(0, 1) when E(X) = 0. To do this, we write:

t−
√
nE(X)

Sn
=

√
n
X̄n − E(X)

Sn
⇒ N(0, σ2)

Sn

Now it suffices to show that Sn
p→ σ ≡ S2

n
p→ σ2. We do so via WLLN: X̄n

p→ Ep(X) and 1
n

∑
X2
i

p→ E(X2),

and n
n−1

p→ 1. Hence: (
X̄n, Yn,

n

n− 1

)
p→ (E(X),E(X2), 1)

=⇒ S2
n =

n

n− 1
[
1

n

∑
X2
i − X̄2

n]
p→ σ2 (by CMT)

Thus, by CMT Sn → σ, yielding that t→ N(0, 1) when E(X) = 0.

3.4 Stochastic Order Notation and Prokhorov’s Theorem

Suppose we have two real valued sequences of random variables Xn and Rn and we which to compare
the magnitude of the two sequences as n→ ∞.

Definition 12 (Big-O and little-o notation).

(i) Xn = Op(Rn) means that Xn is within a multiplicative constant of Rn, i.e., xn variable is stochastically
bounded. In other words

P

(∣∣∣∣Xn

Rn

∣∣∣∣ > δ

)
< ϵ,∀n > N

Meaning we can find a tail in the sequence (n > N) such that the probability of the ratio being larger
than some constant number (δ) is essentially 0. In other words, xn is asymptotically within a finite

constant of rn. Equivalently, for all ϵ > 0, there exists an M > 0 s.t. lim inf
n→∞

P (|Xn| ≤M |Rn|)
n→∞−→ 1−

(ii) Xn = o(rn) means that xn grows more slowly than rn and refers to convergence in probability towards
0. Xn = op(1) means:

lim
n→∞

P (|Xn| ≥ ϵ) = 0∀, ϵ > 0 =⇒ Xn
p→ 0

While Xn = op(rn) means:

xn
rn

= op(1) =⇒ lim
n→∞

P (

∣∣∣∣Xn

rn

∣∣∣∣ ≥ ϵ) = 0∀, ϵ > 0 =⇒ Xn

rn

p−→ 0

Equivalently, for all M > 0 s.t. P (|Xn| ≤M |Rn|)
n→∞−→ 1

The Prokhorov theorem shows that if a sequence converges in distribution then it is bounded in probability
(uniformly tight), and if it is bounded in probability (uniformly tight), it has a convergent subsequence (ala
Bolzano-Weierstrass).

18
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Theorem 16 (Prokhorov).
Let Xn be a random vector in Rp.

(i) If Xn ⇒ X for some X, then Xn = Op(1)

(ii) If Xn = Op(1), there exists a subsequence {Xnj
} ⊂ {Xn} such that Xnj ⇒ X for some X.

Note that Xn = Op(1) means is referred to as the sequence being uniformly tight.

Theorem 17 (Operations using big/little-o notation).

1. Xn = oP (Rn) iff Xn = RnYn for some Yn = oP (1)

2. Xn = OP (Rn) iff Xn = RnYn for some Yn = OP (1)

3. oP (1) + oP (1) = oP (1) (sum of two things that conv in prob to 0)

4. oP (1) +OP (1) = OP (1) (sum of thing that conv in prob to 0 and bdd in prob)

5. OP (1) ·OP (1) = OP (1) (product of two things bdd in prob)

6. oP (1) ·OP (1) = oP (1) (product of conv in prob to 0 and bdd in prob)

7. [1 + oP (1)]
−1 = OP (1)

8. Xn = oP (1) =⇒ Xn = OP (1) (conv in prob to 0 implies bdd in prob)

We can use big/little-o notation to explore the convergence rates of common estimators!

Example 8 (Convergence rates of sample mean and variance).

Sample mean: Suppose X1, . . . , Xn
iid∼ P and Ep[X2] <∞. By CLT,

√
n(X̄n −EP [X]) ⇒ N(0,VarP (X)).

By Prokhorov’s theorem, this implies
√
n(X̄n − EP [X]) = OP (1) yielding X̄n − EP (X) = Op(n

−1/2), the
convergence rate of the sample mean to the population mean based on CLT.

Sample variance: Suppose X1, . . . , Xn
iid∼ P and Ep[X4] <∞. We also know that:

S2
n =

n

n− 1

(
1

n

n∑
i=1

(X2
i )− X̄2

n

)

Where by CLT: 1
n

∑n
i=1(X

2
i ) = EP (X2) + Op(n

−1/2) and X̄n = EP (X) + Op(n
−1/2) and (X̄n)

2 =(
EP (X) +Op(n

−1/2)
)2

= EP (X)2 + Op(n
−1/2) + Op(n

−1) and since Op(n
−1/2) + Op(n

−1) = Op(n
−1/2),

then:

S2
n =

n

n− 1
(Ep[X2] +Op(n

−1/2)− (EP (X)2 +Op(n
−1/2)))

=
n

n− 1

(
VarP (X) +OP (n

−1/2)
)

Thus, S2
n −Varp(X) = Op(n

−1/2)
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3.5 Multivariate and Lindeberg Feller CLT

We presented the Central Limit Theorem only in the case of univariate observations iid from some
fixed distribution. Here, we generalize the result to multivariate iid observations and general independent
observations (not required to be identically distributed).

Theorem 18 (Multivariate CLT). Suppose X1, . . . , Xn
iid∼ P where P is fixed distribution with support in

Rd and EP [||X||2]. Then
√
n(X̄n − µ) ⇒ N(0d,Σ)

Where µ := E[X] and Σ := EP [(X − µ)(X − µ)T ]

Proof : use the Cramer-Wold device. Fix t ∈ Rd and Ȳn = tT X̄n meaning Ȳn is the sample mean of the iid
observations Yi := tTXi for all observations Xi.

We can confirm the bounded second moment of Y1 via the Cauchy Schwartz inequality (E[XY ] ≤√
E(X2)E(Y 2)):

E[Y1] =
d∑
j

d∑
k

tjtkE[X1j , X1k]
C−S
≤

d∑
j

d∑
k

tjtkE[X2
1j ]

1/2 · E[X2
1k]

−1/2

≤ E[||X1||2]
d∑
j=1

d∑
k=1

|tjtk| <∞

Thus, we can apply the univariate CLT, where E(Y1) = tTµ, and Var(Y1) = Var(tTY1) = tTVar(X1)t =
tTΣt

√
n(X̄n − tTµ) ⇒ N(0, tTΣt)

Thus,

tT [
√
n(Ȳn − µ)] ⇒ N(0, tTΣt)

=⇒
√
n(X̄n − µ) ⇒ N(0,Σ)

Can we generalize to independent (but not identical) observations? The LF CLT is the way to do it!

Theorem 19 (Lindeberg-Feller CLT). For each n, let {Xni}ni=1 be an independent collection of R-valued
random variables. Suppose that the means µni := E(Xni) and variances σ2

ni := Var(Xni) exist and are finite.
Suppose σ2

n :=
∑n
i=1 σ

2
ni > 0 for all n. Finally let Yni = (Xni − µni)/σn. If the Lindeberg condition holds:

for all ϵ > 0,

n∑
i=1

E[Y 2
niI(|Yni ≥ ϵ)]

n→∞−→ 0

then
n∑
i=1

Yni ⇒ N(0, 1)

Note: we can also replace the Lindeberg condition with the Lyapunov condition:

n∑
i=1

E[|Y 2+δ
ni |] n→∞−→ 0 for some δ > 0
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Example 9 (OLS is ASN).

We can use the LF-CLT to show that the OLS estimator under a fixed design, β̂ is ASN. Using the orthogonal
decomposition of the OLS estimator we obtain:

β̂ = (XT
nXn)

−1XT
n Y = (XT

nXn)
−1XT

n (Xβ + ϵn)

= β + (XT
nXn)

−1XT
n ϵn

=⇒ (XT
nXn)

1/2(β̂ − β) = (XT
nXn)

−1/2xTn ϵn

Goal is to show RHS converges weakly to N(0, σ2Id+1) random variable. We execute the proof in steps:

1. Cramer-Wold device: for ani being the ith column of (XT
nXn)

−1/2xTn :

tT (XT
nXn)

−1/2xTn ϵn =

n∑
i=1

(tTani)ϵi

and observe that:

σ2
ni := Var([tTani]ϵi) = [tTani]

2Var(ϵi) = [tTani]
2σ2

Hence:

σ2
n =

n∑
i=1

σ2
ni = σ2

n∑
i=1

[tTani]
2

= σ2tT (XT
nXn)

−1/2XT
nXn(X

T
nXn)

−1/2t = σ2||t||2

2. Defined scaled RV and write out Lindeberg condition: Define Zni =
(tT ani)ϵi

σn
. For fixed ϵ > 0:

n∑
i=1

E[Z2
niI(|Zni| ≥ ϵ)]

3. Simplify and eliminate randomness in i by taking the max:

n∑
i=1

E[Z2
niI(|Zni| ≥ ϵ)] = σ−2

n

n∑
i=1

(tTani)
2E[ϵ2i I(|tTani||ϵi| ≥ σnϵ)]

= σ−2
n

[
n∑
i=1

(tTani)
2

]
max
i

E[ϵ2i I(|tTani||ϵi| ≥ σnϵ)]

= σ−2 max
i

E[ϵ2i I(|tTani||ϵi| ≥ σnϵ)] (B/c σ2
n = σ2||t||2)

4. Cauchy-Schwartz to the expected value statement

max
i

E[ϵ2i I(|tTani||ϵi| ≥ σnϵ)]
C−S
≤ max

i
E[ϵ2i I(||t||||ani||ϵi| ≥ σnϵ)]

= max
i

E[ϵ2i I(||t||||ani||ϵi| ≥ σϵ)] (b/c σn = σ||t||)

5. Dominated convergence theorem (DCT) to establish convergence criterion

max
i

E[ϵ2i I(||t|| · ||ani| · |ϵi| ≥ σϵ)] << E[ϵ2i I(max
i

||ani|| > ϵ)]
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Thus, if max
i

||ani|| i.e., the maximum leverage goes to 0, then by DCT, the Lindeberg condition

holds. This implies

tT (XT
nXn)

−1/2xTn ϵn ⇒ N(0, σ2||t||2) ≡ N(0, tT [σ2Id+1]t)

Thus,

(XT
nXn)

−1/2xTn ϵn ⇒ N(0, σ2Id+1)

=⇒ (XT
nXn)

1/2(β̂ − β) ⇒ N(0, σ2Id+1)

3.6 Multivariate delta method

Suppose that X1, . . . , Xn
iid∼ Pθ0 from a collection of distributions M ≡ {Pθ : θ ∈ Θ} with support on

Rd. Suppose ψ ≡ Ψ(θ0) ∈ Rd is an arbitrary function of the input parameter and ψn (an estimate of ψ0)
satsifies:

rn(ψn − ψ0) ⇒ Z

for some weak limit Z and sequence of reals rn → ∞.
Suppose we are interested in estimating f(ψ0) where f : Rd → R is differentiable at ψθ. The following

theorem allows us to calculate the limiting distribution of f(ψn):

Theorem 20 (MV Delta method Rd → R).
If f : Rd → R is differentiable at ψ0 and rn(ψn − ψ0) ⇒ Z holds, then:

f(ψn)− f(ψ0)− ⟨ϕn − ϕ0,∇f(ψ0)⟩ = oP (r
−1
n )

⇐⇒ rn(f(ψn)− f(ψ0)) ⇒ ⟨Z,∇f(ϕ0)⟩

Proof : f is differentiable at ϕ0 iff f is uniformly converging to 0, i.e., g is continuous at 0 for:

g : ϵ→

 sup
h∈Rd:||h||=1

|f(ψ0+ϵh)−f(ψ0)−ϵ⟨h,∇f(ψ0)⟩|
ϵ if ϵ ̸= 0

0 otherwise

Note: that we can replace the uniform convergence condition with the condition that f is partially
differentiable in a neighborhood about ψ0 AND the partial derivatives are continuous.

Let ϵn = ||ψn − ψ0|| and let:

hn =

{
(ψn − ψ0)/ϵn if ϵn ̸= 0

0 else

Then:

|f(ψn)− f(ψ0)− ⟨ψn − ψ0,∇f(ψ0)⟩| = |f(ψ0 + ϵnhn)− f(ψ0)− ϵn⟨hn,∇f(ψ0)⟩|
≤ sup
h:||h||=1

|f(ψ0 + ϵnh)− f(ψ0)−n,∇f(ψ0)⟩|

= ϵng(n)

We know rn(ψn − ψ0) ≡ rn(ϵnhn) ⇒ Z and hn = op(1) therefore ϵn = Op(r
−1
n ). As n → ∞, ϵn = op(1).

By CMT g(n) = op(1) so ϵng(n) = op(r
−1
n ).
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Thus |f(ψn)− f(ψ0)− ⟨ψn − ψ0,∇f(ψ0)⟩| = op(r
−1
n ).

Since the first and third terms would cancel we obtain:

rn(f(ψn)− f(ψ0)) = ⟨rn(ψn − ψ0),∇f(ψ0)⟩+ rn(f(ψn)− f(ψ0)− ⟨ψn − ψ0,∇f(ψ0)⟩)︸ ︷︷ ︸
op(1)

⇒ ⟨Z,∇f(ψ0)⟩ (by CMT and Slutsky)

Can we generalize to a vector-valued function f : Rd → Rp? Yes we can!

Theorem 21 (MV Delta Method Rd → Rp).
Suppose rn(ψn−ψ0) ⇒ Z for some weak limit Z and real numbers rn → ∞ and f : Rd → Rp is differentiable
at ψ0 (meaning we replace the gradient with the Jacobian and dot product by matrix multiplication). It
holds that:

f(ψn)− f(ψ0)− Jf (ψn − ψ0) = op(r
−1
n )

Where Jf =

∇T f1
...

∇T fp

. And:

rn[f(ψn)− f(ψ0)] ⇒ JfZ

Example 10 (Estimating relative risk).
Suppose we observe n iid copies of X = (T, Y ) where T and Y are binary and Pθ0(T = 1) = 1/2. Let:

ψ0 =

(
Eθ0 [Y T ]

Eθ0 [Y (1− T )]

)
The objective is to estimate f(ψ0) where f(z) =

z1
z2
. Our estimator is as follows:

ψn =
1

n

n∑
i=1

(
YiTi

Yi(1− Ti)

)
By the CLT:

√
n(ψn − ψ0) ⇒ N

(
0,Σ =

(
ψ0,1(1− ψ0,1) −ψ0,1ψ0,2

−ψ0,1ψ0,2 ψ0,2(1− ψ0,2)

))
By noting that ∇f(ψ0) = (1/ψ0,2,−ψ0,1/ψ

2
0,2) = (1/ψ0,2,−f(ψ0)/ψ0,2), gthe multivariate delta method

yields that:

√
n[f(ψn)− f(ψ0)] ⇒ ⟨N(0,Σ),∇f(ψ0)⟩

≡ N(0,∇f(ψ0)
TΣ∇f(ψ0))

≡ N

(
0, f(ψ0)

1− ψ0,1

ψ0,2
+ f(ψ0)

2

[
2 +

1− ψ0,2

ψ0,2

])
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4 M-estimation, Z-estimation, and Maximum likelihood estima-
tion

M-estimation and Z-estimation are closely related estimation procedures for ϕ0 = Φ(θ0) (some functional
of the true DGP Pθ0 where θ0 ∈ Θ is unrestricted) that involve maximizing and finding the root of an
population-based estimating equation, and replacing the population quantity by its empirical estimator.

We introduce empirical process notation for expectations, which can be read as a probability measure
applied to a function:

Pf ≡
∫
f(x)dP (x)

We also introduce empirical process at f which is just the centered sums:

Gnf = n−1/2
n∑
i=1

(f(Xi)− Pf)

4.1 M-estimation

Definition 13 (M-estimation framework).
For a collection of functions {mϕ : ϕ ∈ S}, mϕ identifies ϕ0 if:

ϕ0 ∈ argmax
ϕ

Eϕ[mϕ(X)] is a singleton ≡ argmax
ϕ

Pθ0mϕ

In the m-estimation framework, we replace the expectation over Pθ0 (the true DGP) with the expectation
over the empirical distribution Pn:

ϕn ∈ argmax
ϕ

1

n

n∑
i=1

mϕ(Xi) ≡ argmax
ϕ

Pnmϕ

More generally, suppose {Mθ : θ ∈ Θ} are a collection of real-valued functions satisfying:

ϕ0 ∈ argmax
ϕ

Mθ(ϕ) of all θ ∈ Θ

Then the M-estimator is given by

ϕn ∈ argmax
ϕ

Mn(ϕ)

Where Mn is an estimator of Mθ0 .

Example 11 (MLE as M-estimator).
Suppose any two distribution functions P,Q are absolutely continuous with respect to the Lesbegue/counting
measure – then the pdfs/pmfs can be defined via the Radon-Nikodyn derivative: P := dP

dµ .
Define the KL-divergence as:

DKL(P ||Q) := −P
[
log

(
q

p

)]
The KL-divergence satisfies positivity and identification criteria:
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1. DKL(P ||Q) ≥ 0.

2. DKL(P ||Q) = 0 iff P = Q.

Let:

θ0 ∈ argmax
θ∈Θ

[−DKL(Pθ0 ||Pθ)]

= argmax
θ∈Θ

Pθ0

[
log

pθ
pθ0

]
= argmax

θ∈Θ
Pθ0 [log pθ]︸ ︷︷ ︸

mϕ

= argmax
θ∈Θ

Pθ0mϕ

Then:

θn ∈ argmax
θ∈Θ

Pnmθ ≡ argmax
θ∈Θ

Pn(log pθ)

= argmax
θ∈Θ

1

n

n∑
i=1

log pθ(Xi)

= argmax
θ∈Θ

n∏
i=1

pθ(Xi) = θ̂MLE

4.2 Z-estimation

Z-estimation is closely related to M-estimation, but instead of choosing a ϕn that maximizes an empirical
expectation, we choose one that finds the root of an empirical estimation equation.

Definition 14 (Z-estimation framework).
A second approach to estimating ϕ0 is to set it as the root of the equation:

Eθ[zϕ(X)] = (0, . . . , 0)T

Z-estimation estimates ϕ0 with a solution ϕn to:

1

n

n∑
i=1

zϕ(Xi) = (0, . . . , 0)T

In a more general setting, suppose {Zθ : θ ∈ Θ} is a bunch of Rb-valued functions satisfying for which ϕ0
is a solution in ϕ to:

Zθ(ϕ) = (0, . . . , 0)T

And letting Zn denote an estimator of Zθ0 , the Z-estimator ϕn is given as a solution in ϕ to:

Zn(ϕ) = (0, . . . , 0)T
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Example 12 (Sample median as a Z-estimator).
Let ϕ0 := median(X). We know

Eθ[sign(X − ϕ0)] = 0

Implying that a the sample median ϕn will be a root of the following estimating equation with probability
1:

1

n

n∑
i=1

sign(Xi − ϕ) = 0

Theorem 22 (Z-estimation as M-estimation and vice versa).
Let

Mθ : ϕ→ −||Zθ(ϕ)||

implying that we can cast any Z-estimator as an M-estimator that obtains its maximum iff Zθ(ϕ) = 0. Many
(but not all) M-estimators can be cast as Z-estimator. We require that derivatives exist:

Zθ : ϕ→ ∇Mθ(ϕ)

An example of an M-estimator that is NOT writable as a Z-estimator is Manski’s estimator of binary choice:

β̂n := argmax
β

∑(
Yi I(XT

i β > 0)
)

Which does not have a natural Z-estimator.

4.3 Consistency of M and Z-estimators

There are several approaches to establishing the consistency of M and Z estimators including the uniform
consistency criterion on Mn and the weak law of large numbers.

Suppose an M -estimator θ̂n maximizes the random criterion function Mn(θ). Under suitable regularity

conditions, there exists an asymptotic criterion function such that Mn(θ)
p→ M(θ) ∀θ but this pointwise

convergence is too weak to ensure that θ̂n
p→ θ0. We need a stronger version of functional convergence: one

such version is uniform convergence. See chapter 5 in VdV for more details.

Theorem 23 (Consistency of an M-estimator (VdV 5.8)).

In order for an M-estimator to be consistent, ϕn
p→ ϕ0, the following three criteria must hold:

(i) Near maximizer is available: Mn(ϕn) ≥ sup
ϕ
Mn(ϕ)− oP (1) (maximizes up to a small mistake)

(ii) Identification: ∀ϵ > 0, M0(ϕ0) > sup
ϕ:||ϕ−ϕ0||>ϵ

M0(ϕ), i.e., ϕ0 is a well-separated maximum

(iii) Uniform consistency: sup
ϕ

|Mn(ϕ)−M0(ϕ)|
p→ 0
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Proof:

M0(ϕ0)−M0(ϕn) ≥ 0 by (ii)

M0(ϕ0)−M0(ϕn) ≤ (M0(ϕ0)−M0(ϕn))− (Mn(ϕ0)− sup Mn(ϕ))︸ ︷︷ ︸
≤0

≤ (M0(ϕ0)−M0(ϕn))− (Mn(ϕ0)−Mn(ϕn)) + oP (1)

= [M0(ϕ0)−Mn(ϕ0)]︸ ︷︷ ︸
≤sup

ϕ
|(Mn−M0)(ϕ)

+ [Mn(ϕn))−M0(ϕn)]︸ ︷︷ ︸
≤sup

ϕ
|(Mn−M0)(ϕ)

+oP (1)

≤ 2 · sup |(Mn −M0)(ϕ)|+ oP (1)

= oP (1) by part (iii), uniform consistency

Thus, we’ve shown that M0(ϕ0) −M0(ϕn) = oP (1). Remains to show consistency. For a fixed ϵ > 0, let
δ =M0(ϕ0)− sup

||ϕ−ϕ0||>ϵ
M0(ϕ) > 0 by (ii). Notice that {||ϕn − ϕ0|| > ϵ} ⊂ {M0(ϕ0)−M0(ϕn) ≥ δ} because

the former event implies tha latter. Therefore:

P0(||ϕn − ϕ0|| > ϵ) ≤ P (M0(ϕ0)−M0(ϕn) ≥ δ)
n→∞−→ 0 b/c we showed M0(ϕ0)

p→M0(ϕn)

=⇒ ϕn
p→ ϕ0

Theorem 24 (Consistency of a Z-estimator (General, VdV 5.9)).
We obtain the consistency of general Z-estimators, largely for free, based on the previous proof. If we notice
that a zero of Zn(ϕ) maximizes the function −||Zn(ϕ)||.

Let Zn(ϕ) be a random values estimating equation and Z0(ϕ) be the population-based estimating equation
such that ∀ ϵ > 0

sup
ϕ
||Zn(ϕ)− Z0(ϕ)||

p→ 0

inf
ϕ:||ϕ−ϕ0||≥0

||Z0(ϕ)|| > 0 = ||Z0(ϕ0)||

Then any sequence of estimators ϕ̂n such that Zn(ϕ̂n) = oP (1) yields ϕ̂n
p→ ϕ0.

Proof : follows from the preceding theorem on applying the function Mn(ϕ) = −||Zn(ϕ)|| and M0(ϕ) =
−||Zn(ϕ)||.

We can derive the consistency of a 1-dimensional Z-estimator under slightly weaker conditions.

Theorem 25 (Consistency of a Z-estimator (1-dim, VdV Lemma 5.10)).
To show that ϕn (the root of the empirical estimating equation Zn(ϕ)) converges in probability to ϕ0 (the
root of the population estimating equation Z0(ϕ)), we rely on the following conditions:

1. Pointwise consistency: ∀ϕ, Zn(ϕ)
p→ Z0(ϕ) by WLLN (weaker than uniform consistency)

2. Either (a) each ϕ→ Zn(θ) is continuous and has exactly one root OR (b) ϕ→ Zn(θ) is non-decreasing.
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3. ∀ϵ > 0, Z0(ϕ0 − ϵ) < 0 < Z0(ϕ0 + ϵ)

Note this theorem only applies to the 1-dimensional case.

Proof:

P [Zn(ϕ0 − ϵ) < 0, Zn(ϕ0 + ϵ) > 0]

≤ P (∃ a root of Zn between ϕ0 − ϵ and ϕ0 + ϵ)

= P (ϕn ∈ (ϕ0 − ϵ, ϕ0 + ϵ))

(1) and (3) implies that:

Zn(ϕ0 − ϵ)
p→ Z0(ϕ0 − ϵ) & Zn(ϕ0 + ϵ)

p→ Z0(ϕ0 + ϵ)

=⇒ P [Zn(ϕ0 − ϵ) < 0, Zn(ϕ0 + ϵ) > 0]
p→ P [Z0(ϕ0 − ϵ) < 0, Z0(ϕ0 + ϵ) > 0]

p→ 1 (part (3))

Implying that P (ϕn ∈ (ϕ0 − ϵ, ϕ0 + ϵ))
p→ 1 and showing that ϕn

p→ ϕ0

Wald offers an alternative set of conditions that permit the consistency of M-estimators. It works best if
the parameter set is compact, and if not, we must show that estimators are eventually in a compact set of
lie in a suitable compactification. We also require that mθ(x) is upper-semicontinuous for almost all x, i.e.,

lim sup
θn→θ

mθn(x) ≤ mθ(x)

Let:

Mn(θ) = Pnmθ M(θ) = Pmθ

Theorem 26 (Wald’s consistency for M-estimators (VdV 5.14)).
Let mθ(x) be upper-semicontinuous for almost all x and let the criterion over a locally maximum choice of
θ have finite measure – i.e., for every small ball U ⊂ Θ:

P sup
θ∈U

mθ <∞

Typically there exists a unique maximum, but we allow multiple maxima with θ0 describing this set. Then
for any estimators with θ̂n s.t. Mn(θ̂n) ≥Mn(θ0)−op(1), then for every ϵ > 0 and every compact set K ⊂ Θ,
the joint probability:

P (||θ̂n,Θ0|| ≥ ϵ ∧ θ̂n ∈ K) → 0

4.4 Proving uniform consistency

The real meat of proving consistency of M/Z-estimators is showing the uniform consistency condition
holds, i.e., sup

ϕ∈S
|(Pn−P0)mϕ| = oP (1). In other words, a set of functions {mϕ : ϕ ∈ S} that satisfies uniform

consistency is said to be P0-Glivenko-Cantalli. We can demonstrate the function space is P0-Glivenko-
Cantalli a variety of ways, using symmetrization and VC-bounds, Martingale theory, or via bracketing
entropy. We pursue the final strategy. See chapter 19 in VdV for more details.
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Definition 15 (P0-Glivenko-Cantalli and Bracketing Number).
A class of functions {mϕ : ϕ ∈ S} is said to be P0-Glivenko-Cantalli if it satisfies sup

ϕ∈S
|(Pn − P0)mϕ| =

oP (1).
Given two functions ℓ, u in L1(P0) where L

1(P0) is the space of functions f : X → R satisfying:

||f ||L1(P0) ≡
∫

|f(x)|dP0(x) <∞

A bracket [ℓ, u] contains the set of all functions f with ℓ ≤ f ≤ u. An L1(P0) ϵ-bracket is a bracket [ℓ, u] for
which ||u− ℓ||L1(P0) ≤ ϵ.

The bracketing number denoted N[](ϵ,F , L1(P0)) of F is the minimum number of ϵ-brackets needed
to cover F .

And turns out, finite bracketing numbers of sets of functions imply that the set is P0-Glivenko-Cantelli!

Theorem 27 (P0-G-C via bracketing).
If F is a class of functions for which N[](ϵ,F , L1(P0)) <∞ for every ϵ > 0, F iS P0-G-C, i.e,

||Pn − P0||F ≡ sup
f∈F

|(Pn − P0)f | = oP (1)

Proof : the proof relies on the union bound result. For Ai ∈ A for i ∈ {1, 2, . . .}, then:

µ

( ∞⋃
i=1

Ai

)
≤

∞∑
i=1

µ(Ai)

The general proof idea involves (a) within each ϵ-bracket, recognizing the f ’s are nearly identical (b)
there exist finitely many ϵ-brackets and (c) using the union bound result.

Fix ϵ > 0. By condition ∃ [ℓj , uj ] for j ∈ {1, 2, . . . , N} where N is the bracketing number s.t. the
collection of brackets covers F . Define the following quantities:

An,ϵ := {sup
f∈F

(Pn − P )f > 2ϵ}

Bn,ϵ := {sup
f∈F

(Pn − P )f < −2ϵ}

By symmetry it suffices to study An,ϵ and show that it is vanishing, i.e., the LHS is converging in
probability to 0. Fix f ∈ F , and by condition there exists one j s.t., ℓj ≤ f ≤ uj pointwise, implying:

Pnf ≤ Pnuj P0f ≥ P0uj − P0(uj − ℓj)

(Pn − P0)f ≤ Pnuj − P0uj + P0(uj − ℓj)

= (Pn − P0)uj + P0(uj − ℓj)

≤ (Pn − P0)uj + P0|uj − ℓj |︸ ︷︷ ︸
=||uj−ℓj ||L1(P0)≤ϵ

(by abs value)

≤ (Pn − P0)uj + ϵ
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Putting all the pieces together:

P0(An,ϵ) = P0(sup
f∈F

(Pn − P )f > 2ϵ)

≤ P0

(
sup

j∈{1,...,N}
(Pn − P0)uj + ϵ+ 2ϵ

)

≤
N∑
i=1

P0((Pn − P0)uj > ϵ)

= o(1) ≡n→∞−→ 0

Thus, we’ve shown that the probability of sup
f∈F

(Pn − P )f > 2ϵ is asymptotically shrinking to 0, meaning

sup
f∈F

|(Pn − P )f | = oP (1)

This begs the question, how do we show that a given class of functions has a finite bracketing number.
To do so, we rely on Example 19.8 from Van der Vaart.

Theorem 28 (Finite bracketing number). Suppose

(i) F ≡ {fϕ : ϕ ∈ K} is a collection of functions where K ⊂ Rd is compact.

(ii) ∀x, ϕ→ fϕ(x) is continuous.

(iii) There exists an envelope function F s.t. both of the following as satisfied:

(a) sup
ϕ∈K

|fϕ(x)| ≤ F (x) for all x.

(b) P0|F | = P0F <∞

Then ∀ϵ > 0, the bracketing number is finite: N[](ϵ, L
1(P0),F) <∞.

Proof: Let [fB , f
B ] be the bracket formed by the infimum and supremum of f for an open ball B about θ.

Construct a sequence of balls centered at ϕ called Bm with radii decreasing to 0. This implies fBm −
fBm

m→∞−→ 0 by the continuity of f.
Thus for any given ϵ > 0 and for all ϕ, we can find an open ball B about ϕ such that the bracket [fB , f

B ]
is at most size ϵ.

Sine K is compact, the open cover of collection of brackets (the union of the open balls) has a finite
subcover. The brackets in the finite subcover cover F , are finite in number, and have size at most ϵ,
implying that the bracketing number for F is finite.

4.5 Asymptotic normality of M and Z-estimators

We like the consistency of M and Z-estimators, but the next question is how quickly the M and Z-
estimators converge to their targets. Turns out that for estimators based on N replications of an experiment,
that the order is often n−1/2 and multiplication with the inverse rate creates a balance, allowing

√
n(θ̂n− θ)

to converge to an (often) normal distribution! This is a powerful tool for inference!

Example 13 (Heuristic for ASN of 1-d Z-estimator).
Suppose ϕn is the root of the equation Zn(ϕ) = Pnzϕ = 0, and ϕ0 is the root of Z0(ϕ) = Pzϕ0

= 0. Let
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ϕn
p→ ϕ0.

0 = Z0(ϕ0) = −Z0(ϕ0)

= [Zn(ϕ0)− Z0(ϕ0)]− Zn(ϕ0) (add subtract)

= [Zn(ϕ0)− Z0(ϕ0)] + Zn(ϕn)− Zn(ϕ0) (bc Zn(ϕn) = 0)

= [Zn(ϕ0)− Z0(ϕ0)]︸ ︷︷ ︸
Term 1

+Z0(ϕn)− Z0(ϕ0)︸ ︷︷ ︸
Term 2

+Zn(ϕn)− Zn(ϕ0)− Z0(ϕn) + Z0(ϕ0)︸ ︷︷ ︸
Term 3

Let’s analyze the three terms separately!

Term 1 = (Pn − P0)zϕ0

Term 2 = (ϕn − ϕ0)Ż0(ϕ0) +
1

2
(ϕn − ϕ0)

2Z̈0(ϕ̃n)︸ ︷︷ ︸
=(ϕn−ϕ0)op(1)Op(1)

(Since Z̈0(ϕ̃n) = Op(1))

= (ϕn − ϕ0)Ż0(ϕ0) + oP (ϕn − ϕ0)

Term 3 = (Pn − P0)(zϕn
− zϕ0

)

Let’s pretend that ϕn is deterministic. Now we invoke Chebychev’s inequality:

P0{|(Pn − P0)(zϕn − zϕ0)| > t/
√
n} ≤ nVar0[(Pn − P0)(zϕn − zϕ0)]

t2

=
Var0(zϕn

− zϕ0
)

t2

Suppose ϕn → ϕ0, the variance of the RHS will typically go to 0. This holds for example when there exists
a function G with P0G

2 <∞ such that for every ϕ in some neighborhood of ϕ0:

|zϕ(x)− zϕ0
(x)| ≤ ||ϕ− ϕ0||G(x)

If ϕn → ϕ0, then Term 3 = op(n
−1/2). To show this for a random sequence ϕn is outside the scope of this

course (will be covered in 582-583).
Plugging in Terms from above, we obtain:

0 = (Pn − P0)zϕ0
+ (ϕn − ϕ0)

(
Ż0(ϕ0) + oP (1)

)
+ oP (n

−1/2)

=⇒ ϕn − ϕ0 = − (Pn − P0)zϕ0

Ż0(ϕ0) + oP (1)
+ oP (n

−1/2)

And under a finite second moment P0z
2
ϕ0

< ∞, then
√
n(Pn − P0)zϕ0

/Ż0(ϕ0) ⇒ N(0, P0z
2
ϕ0
/Ż0(ϕ0)

2),
implying:

√
n(ϕn − ϕ0) ⇒ N

(
0,

P0z
2
ϕ0

Ż0(ϕ0)2

)

Note that the preceding derivation requires that the criterion function zϕ(x) possesses two continuous
derivatives with respect to the parameter θ for all x. This fails when the criterion function is zθ(x) =
sign(x− θ) for which the median is a root, yet the sample median is still ASN! This motivates the need for
additional conditions to achieve ASN.

The following two theorems describe the asymptotic normality of M and Z estimators. We omit their
proofs:
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Theorem 29 (ASN of General Z-estimators (VdV 5.21)).
Let ϕ0 = P0zϕ and ϕn = Pnzϕ. Suppose the following conditions hold:

1. Interior: suppose ϕ is in a open subset of Rd and that zϕ (the EE) is a map from X → Rd.

2. EE has finite second moment: E0||zϕ0
(X)||2 <∞

3. Smoothness and strong convexity: ϕ → P0zϕ is differentiable at a zero ϕ0 with nonsingular Jacobian
(derivative matrix) Vϕ0 (strongly convex).

4. Envelope function: there exists G : X → R s.t.

(i) Finite second moment: P0G
2 <∞

(ii) Lipschitz condition: ∀x ∈ X and every ϕ, ϕ̃ ∈ U(ϕ0) (neighborhood of ϕ0):

||zϕ(z)− zϕ̃(x)|| ≤ ||ϕ− ϕ̃||G(x)

5. Root-n consistency: {ϕn} is a sequence of estimators of ϕ0 s.t. Pnzϕn
= op(n

−1/2) and ϕn
p→ ϕ0.

Under these conditions, the Z-estimator ϕn is ASN:

√
n(ϕn − ϕ0) ⇒ N

(
0, V −1

ϕ0
P [zϕ0

zTϕ0
](V −1

ϕ0
)T
)

Note: when zϕ(x) is continuously differentiable, a natural candidate for G in the above equation is
sup
ϕ∈Uϕ0

||żϕ||.

Then the main condition reduces to partial derivatives are locally dominated by a square integrable
function, i.e., there should exists a square-integrable function G s.t. ||żϕ(x)|| ≤ G(x) for all ϕ close to ϕ0. If
żϕ is also continuous at ϕ0, DCT allows us to move the derivative inside the expectation, yielding Vϕ0

= P żϕ0

Proof : Let Gnf :=
√
n(Pn−P )f denote the empirical process evaluated at f . Note that Jensen’s inequality,

the Lipschitz condition on zϕ, and and consistency of ϕn
p→ ϕ0 implies:

||Gnzϕn
−Gnzϕ0

|| ≤︸︷︷︸
Jensen

Gn||zϕn
− zϕ0

||

≤︸︷︷︸
4(ii)

GnG(x)||ϕ− ϕ̃||

= Op(1)op(1) = op(1)

=⇒ Gnzϕn
−Gnzϕ0

p→ 0

Note we can rewrite:

Gnzϕn
=

√
n(Pn − P )zϕn

≡
√
n(Pnzϕn︸ ︷︷ ︸

=0

−Pzϕn)

≡
√
nP (zϕ0︸ ︷︷ ︸

=0

−zϕn
) + oP (1)

Since Pzϕ is differentiable, we can apply the delta method to
√
nP (zϕ0

− zϕn
) + oP (1):

Gnzϕn
= Gnzϕ0

+ oP (1)

=⇒
√
nP (zϕ0

− zϕn
) = Gnzϕ0

+ oP (1)

=⇒
√
n (Vϕ0

(ϕ0 − ϕn) + oP (||ϕn − ϕ0||)) = Gnzϕ0
+ oP (1) (Taylor expansion)
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Now we can write the following, knowing that nonsingularity of the variance matrix yields:

√
n||ϕn − ϕ0|| ≤︸︷︷︸

C-S

√
n||V −1

ϕ0
|| · ||Vϕ0(ϕn − ϕ0)||

= oP (
√
n||ϕn − ϕ0||) +Op(1)

This shows that ϕn
p→ ϕ0 at rate at least n−1/2. Thus, we have that oP (

√
n||ϕn − ϕ0||)oP (1) and then”

√
nVϕ0

(ϕn − ϕ0) = −Gnzϕ0
+ oP (1)

=⇒
√
n(ϕn − ϕ0) = −[Vϕ0

]−1Gnzϕ0
+ oP (1)

⇒ −[Vϕ0
]−1N

(
0, P zϕ0

T
ϕ0

)
≡ N

(
0, [Vϕ0

]−1]Pzϕ0

T
ϕ0
[Vϕ0

]−1]T
)

Turns out, the Lipschitz condition is even stronger than is necessary and does not work for the sample
median! We can still obtain convergence of the empirical processes under the weaker conditions where zϕ(x)
are a Donsker class and is continuous in probability. For example, the zϕ(x) = sign(x−ϕ) (which generates
the median) do satisfy these criteria.

Theorem 30 (ASN of General M-estimators (VdV 5.23)).
Let ϕ0 = argmax

ϕ
P0mϕ and ϕn = argmax

ϕ
Pnmϕ. Suppose the following conditions hold:

1. mϕ differentiable: suppose ϕ is in a open subset of Rd and that mϕ(x) (the max criterion) is differen-
tiable at ϕ0 for P0-almost everywhere x with derivative ṁϕ0 .

2. Envelope function: ∀ϕ, ϕ̃ ∈ U(ϕ0) (neighborhood of ϕ0), assume there exists a function G : X → R
satisfying:

(i) Finite second moment: P0G
2 <∞

(ii) Lipschitz condition: ∀x ∈ X and every ϕ, ϕ̃ ∈ U(ϕ0) (neighborhood of ϕ0):

||mϕ(x)−mϕ̃(x)|| ≤ ||ϕ− ϕ̃||G(x)

Note: we can identify this G by defining ṁθ(x) = ∇θmθ(X) for a continuously differentiable h
neighborhood U around θ, pick G(x) = θ ∈ U

sup
||ṁθ(x)||2 because we’ve taken the largest magnitude

derivative in the neighborhood. Second step is showing PθG(x)
2 <∞ (pg 53 VdV).

3. Uniform convergence: assume there exists a non-singular symmetric matrix Vϕ0 s.t.

lim
ϵ→0

sup
||h||=1

∣∣P0mϕ0+ϵh − P0mϕ0
− 1

2ϵ
2hTVϕ0

h
∣∣

ϵ2
ϵ→0−→ 0

Note: we will verify this condition using QMD for MLE. Note: we can replace this condition by the
supposition that P0mϕ is twice continuously differentiable at θ0, affording a two-term Taylor expansion:

P0mϕ = P0mϕ0
+

1

2
(ϕ− ϕ0)

TVϕ0
(ϕ− ϕ0) + o(||ϕ− ϕ0||2)

4. Near maximizer and consistent: Pnmϕn ≥ sup
ϕ
Pnmϕ − oP (n

−1) and ϕn
p→ ϕ0

Under these conditions, the M-estimator is ASN:

√
n(ϕn − ϕ0) ⇒ N

(
0, V −1

ϕ0
P0ṁϕ0

ṁT
ϕ0
V −1
ϕ0

)
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4.6 Maximum Likelihood Estimation

Maximum likelihood estimators can be viewed as maximizers of the log-likelihood criterion function. For
mathematical convenience, we can subtract a constant pθ0 too:

Mθ0 : θ → Eθ0
[
log

dPθ
dµ

(X)

]
= Eθ0 [log(pθ(X))] ≡

equivalent to maximizing: Eθ0 log
[
pθ
pθ0

]
= P0 log

[
pθ
pθ0

]
Mθn : θ → 1

n

∑
log pθ(Xi)

equivalent to maximizing: Pn log

[
pθ
pθ0

]
−Mθ0 is the Kullback-Leibler divergence of pθ and pθ0 . Thus, The MLE by definition minimizes the

(empirically estimated) KL divergence and by consistency, converges in probability to the θ that minimizes
the true KL divergence. This corresponds to the true value θ0 when the model is identifiable, i.e.:

Pθ ̸= Pθ0 ∀θ ̸= θ0

The MLE can also be viewed as a Z-estimator:

Zθ0 : θ → ∇θMθ0 ≡ ∇θEθ0 [log pθ(X)]

In STAT513, we assumed that we could exchange integration and differentiation, yielding that the score
function has mean 0 and the asymptotic variance of the MLE. However, exchanging integration and differ-
entiation is a strong condition, which we can replace by QMD in the next subsection.

Example 14 (Properties of MLE under strong condition).
Suppose we can exchange integration and differentiation (a strong and non-necessary condition).

Claim 1: the score has function has mean 0, i.e., Zθ0(θ0) = 0.

Zθ0(θ0) = E0[ℓ̇θ0 ]

=

∫
ℓ̇θ0(x)pθ0(x)dµ(x)

=

∫
ṗθ0(x)

pθ0(x)
pθ0(x)dµ(x)

=

∫
ṗθ0(x)dµ(x)

=

∫
∇θpθ0dµ(x)

= ∇θ

∫
pθ0dµ(x)︸ ︷︷ ︸

=1

= 0

Claim 2: the MLE is asymptotically normal. Suppose θ ∈ R. Recall we showed for Z-estimators that under
some conditions:

√
n(θn − θ0) ⇒ N

(
0,

P0z
2
θ0

Ż0(θ0)2

)
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We know P0z
2
θ0

= P0ℓ̇
2
θ0

where ℓ̇θ0 is the score. We know the following:

∂

∂θ
ℓ̇θ(x) =

p̈θ0(x)pθ0(x)− ṗθ0(x)
2

pθ0(x)
2

Ż0(θ0) = E0

[
∂

∂θ
ℓ̇θ(x)

]
=

∫
p̈θ0(x)pθ0(x)− ṗθ0(x)

2

pθ0(x)
2

dPθ0(x)

=

∫
p̈θ0(x)dµ(x)−

∫
ℓ̇θ0(x)

2dPθ0(x)

= ∇2
θ

∫
pθ0(x)dµ(x)︸ ︷︷ ︸

=1

−
∫
ℓ̇θ0(x)

2dPθ0(x)

= −E0[ℓ̇θ0(x)
2] ≡ −P0z

2
θ0

Therefore the asymptotic variance of the MLE is [P0z
2
θ0
]−1 = [P0ℓ̇θ ℓ̇

T
θ ]

−1 = I−1
θ .

Claim 3: MLE is ASN multivariate. Let θ ∈ Rd. By similar arguments, we note that the FIM is defined
as:

Iθ = Eθ[ℓ̇θ(X)ℓ̇θ(X)T ]
√
n(θn − θ0) ⇒ N(0, I−1

θ0
P0[ℓ̇θ ℓ̇

T
θ ]I

−1
θ0

) ≡ N(0, I−1
θ0

)

Note: these derivations implicitly require that the density pθ has at least two derivatives with respect
to the parameter. This is not the case with uniform distributions for example!

4.7 Quadratic Mean Differentiablility (QMD)

Note that we can show the score has mean 0 without requiring the exchange of integration and differ-
entiation! Also note that the asymptotic variance of the MLE depends on the score but not its derivative,
motivating the need for QMD.

QMD is also critical for allowing the asymptotic expansion of the local log-likelihood ratio, which allows
us to conclude that likelihood ratio processes tend to a Gaussian process after reparametrization.

Definition 16 (QMD).
The root density

√
pθ is called QMD (or differentiable in quadratic mean) at θ if there exists a function ℓ̇θ

s.t.:

sup
h∈Rd:||h||=1

∫ [√
pθ+ϵh(x)−

√
pθ(x)

ϵ
− 1

2
hT ℓ̇θ(x)

√
pθ(x)

]2
dµ(x)

ϵ→0−→ 0

Or equivalently, for any h (VdV pg 93)∫ [√
pθ+ϵh(x)−

√
pθ(x)−

1

2
hT ℓ̇θ

√
pθ

]2
µ(dx) = o(||h||2) as h→ 0

≡ 1

||h||2

∫ [√
pθ+ϵh(x)−

√
pθ(x)−

1

2
hT ℓ̇θ

√
pθ

]2
µ(dx)

p→ 0

35



Ethan Ashby STAT581 Notes Fall 2022

A model {Pθ : θ ∈ Θ} is called QMD at θ if the root density is QMD at θ. A model is called QMD if the
root density is QMD at all θ ∈ Θ.

Here is a theorem that we can use to verify QMD-ness.

Theorem 31 (Thm 7.6 VdV).
Suppose that

√
pθ(x) is continuously differentiable for every x. If the elements of the matrix:

Iθ =

∫
ṗθ(x)ṗθ(x)

T

pθ(x)2
dPθ(x)

are well-defined and continuous in θ, then
√
pθ is QMD and ℓ̇θ is given by ṗθ

pθ
.

See Theorem 15 for a result showing QMD-ness for exponential families (Vdv Ex. 7.7)!
One theorem will help us link the results of applying M-estimation ASN to known properties of the MLE

Theorem 32 (Thm 7.2 VdV).
Suppose the following:

• Θ is an open subset of Rd

• {Pθ : θ ∈ Θ} is QMD at θ.

Then Pθ ℓ̇θ = 0 and the FIM Iθ = Pθ ℓ̇θ ℓ̇
T
θ exists.

With QMD in hand, we can establish the asymptotic normality and expected properties of maximum
likelihood estimators rigorously: without requiring exchange of integration and differentiation and without
assuming that second derivatives exist.
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Theorem 33 (Properties of MLE under QMD (VdV Theorem 5.39)). Suppose the model {Pθ : θ ∈ Θ} is
QMD at an inner point θ0 ∈ Θ ⊂ Rk. Also suppose there exists a measurable function G (natural choice
would be ℓ̇) with P0G

2 <∞ s.t. for every θ1, θ2 in a neighborhood of θ0:

| log pθ1(x)− log pθ2(x)| ≤ G(x)||θ1 − θ2||

If the Fisher information matrix Iθ0 is nonsingular and θ̂n is consistent, then:

√
n[θ̂n − θ0] = I−1

θ0

1√
n

n∑
i=1

ℓ̇θ0(Xi) + oP (1)

= I−1
θ0

√
n(Pn − P0)ℓ̇θ0 + oP (1)

⇒
CLT

I−1
θ0
N(0,E[(ℓ̇θ0 − E[ℓ̇θ0 ])2])

≡ I−1
θ0
N(0,Var(ℓ̇θ0))

≡ N(0, I−1
θ0

) (b/c FIM is variance of score)

Proof : This is a corollary of Theorem 5.23 (M-estimator ASN). We will show that condition (iii) (uniform
convergence) holds, i.e., we WTS:

sup
||h||=1

∣∣∣∣P0ℓθ0+ϵh − P0ℓθ0 +
1

2
ϵ2hTV0h

∣∣∣∣ = o(ϵ2) as ϵ→ 0

Let pϵ := pθ0+ϵh and let p0 := pθ0 . Note that P0ℓθ0+ϵh − P0ℓθ0 can be written as:

P0[log pϵ − log p0] = P0[2 log
√
pϵ − 2 log

√
p0]

= 2P0

log√ pϵ
p0

− log(1)︸ ︷︷ ︸
=0


= 2

∫
f(wϵ)− f(0)P0(dx)

(
Letting wϵ :=

√
pϵ
p0

− 1 and f(x) = log(1 + w)

)

We did the following bc f has a nice Taylor expansion:

f(w)− f(0) =

∞∑
n=0

f (n)(a)

n!
(w − a)n

= 0 +
1

1!

1

1 + w

∣∣∣
w=0

(w − 0)1 − 1

2!

1

(1 + w)2

∣∣∣
w=0

(w − 0)2 + w2r(w)

= w − w2

2
+ w2r(w)
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With r(w) → 0 as w → 0.

P0[log pϵ − log p0] = 2

(∫
wϵP0(dx)

)
− 2

(∫
w2
ϵ

2
P0(dx)

)
+ 2

(∫
w2
ϵ r(wϵ)P0(dx)

)
Term 1 = 2

∫ (√
pϵ
p0

− 1

)
p0 µ(dx)

= 2

∫
(
√
pϵ −

√
p0)

√
p0 µ(dx)

= −2

∫
(p0 −

√
pϵp0) µ(dx)

= −2

∫
pϵ + p0 − 2

√
pϵp0

2
µ(dx) (b/c

∫
pϵ =

∫
p0 = 1)

= −2
1

2

∫
(
√
pϵ −

√
p0)

2
µ(dx)

= −H2(Pϵ, P0) the Hellinger Distance

Term 2 =

∫
w2
ϵP0(dx)

=

∫ (√
pϵ
p0

− 1

)2

p0 µ(dx)

=

∫ (
pϵ
p0

+ 1− 2

√
pϵ
p0

)
p0µ(dx)

=

∫
(pϵ + p0 − 2

√
pϵp0) µ(dx)

=

∫
(
√
pϵ −

√
p0)

2µ(dx)

= H2(Pϵ, P0)

Term 3 = 2

∫
(
√
pϵ −

√
p0)

2r(Wϵ)µ(dx)

= o(ϵ2) tricky to show

Thus,

P0[log pϵ − log p0] = −2H2(Pϵ, P0)

Now it remains to show that −2H2(Pϵ, P0) and
1
2ϵ

2hTV0h and o(ϵ2) close. To do this, we use the following:

• Reverse triangle inequality: |||a|| − ||b||| ≤ ||a− b||.

• Let’s introduce the L2(µ) metric space which is a collection of functions f s.t. {f : ||f ||L2(µ) < ∞}
equipped with norm ||f ||L2(µ) =

[∫
f2(x)µ(dx)

]1/2
.
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Thus we obtain:∣∣∣∣||√pϵ −√
p0||L2(µ) − ||1

2
ϵhT ℓ̇θ0

√
p0||L2(µ)

∣∣∣∣ ≤ ||√pϵ −
√
p0 −

1

2
ϵhT ℓ̇θ0

√
p0||L2(µ)︸ ︷︷ ︸

QMD

(by rev-tri inequal)

= o(ϵ2)

=⇒ H2(Pϵ, P0) = ||√pϵ −
√
p0||L2(µ) =

1

4
ϵ2||hT ℓ̇θ0

√
p0||2L2(µ)

+ o(ϵ2)

=⇒ −2H2(Pϵ, P0) = −1

2
ϵ2||hT ℓ̇θ0

√
p0||2L2(µ)

+ o(ϵ2)

= −1

2
ϵ2hT

[∫
ℓ̇θ0 ℓ̇

T
θ0p0µ(dx)

]
h

=
1

2
ϵ2hTP0[ℓ̇θ0 ℓ̇θ0 ]h

Implying

P0[mθ0+ϵh −mθ0 ] = P0[log pϵ − log p0] =
1

2
ϵ2hTV0h+ o(ϵ2)

Where V0 = P0[ℓ̇θ0 ℓ̇
T
θ0
].

4.8 Local Asymptotic Normality (Ch 7 VdV)

A sequence of statistical models is LAN if their likelihood ratio processes are similar to those of a normal
location parameter (asymptotically). This holds if the likelihood ratio processes admit a quadratic expansion.
An important example involves sampling from a smooth parametric model. The power of LAN implies
convergence of the models to a Normal model after rescaling the parameter; i.e., statistical experiments can
be approximated by Gaussian experiments after suitable reparameterization.

First we introduce some background.

• Suppose we observe a sample X1, . . . , Xn from a distribution Pθ on a measurable space indexed by
θ ∈ Θ ⊂ Rk an open subset. The distribution of the sample is equivalent to sampling over {Pnθ :=∏n
i=1 Pθ : θ ∈ Θ}

• Statistical experiment: procedure that can be infinitely repeated, has well-defined set of possible
outcomes, produces only one outcome at conclusion of each trial.

• Local parameter: h :=
√
n(θ− θ0) for a fixed, known parameter θ0. We can rewrite Pnθ = Pn

θ0+h/
√
n
,

meaning that the experiment is with respect to unknown parameter h.

Remarkably, we can show that for large n, the following experiments are similar in statistical properties
whenever the original experiments Pθ are smooth in the parameter:

(Pnθ0+h/
√
n : h ∈ Rk) ≡ (N(h, I−1

θ0
) : h ∈ Rk)

meaning a single observation from a normal distribution with mean h and covariance matrix equal to inverse
FIM.

Theorem 34 (Expanding the likelihood ratio (VdV 7.2)).
To show that the likelihood ratio process approximates a Gaussian process (in a local neighborhood of θ),
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we must first expand the likelihood. Suppose for simplicity that ℓθ(x) is twice differentiable wrt θ for all x
with derivatives ℓ̇θ(x) and ℓ̈θ(x). A Taylor series expansion of pθ+h at θ yields the log likelihood ratio is:

log
pθ+h
pθ

= log pθ+h − log pθ

= log pθ + hℓ̇θ(x) +
1

2
h2ℓ̈θ(x) + ox(h

2)− log pθ

= hℓ̇θ(x) +
1

2
h2ℓ̈θ(x) + ox(h

2)

It follows that:

log

n∏
i=1

pθ0
pθ

(Xi) := log

n∏
i=1

pθ+h/
√
n

pθ
(Xi)

=
h√
n

n∑
i=1

ℓ̇θ(Xi) +
1

2

h2

n

n∑
i=1

ℓ̈θ(Xi) + Remaindern

= h
√
n

(
1

n

n∑
i=1

ℓ̇θ(Xi)− 0

)
+

1

2

h2

n

n∑
i=1

ℓ̈θ(Xi) + Remaindern

= h
√
n(Pnℓ̇θ − Pθ ℓ̇θ)︸ ︷︷ ︸

Gnℓ̇θ

+
h2

2
Pnℓ̈θ︸︷︷︸
p→−Iθ

+Remaindern (Score has mean 0)

asymptotically ≡ hN(0, Iθ)−
h2

2
Iθ + oPθ

(1)

In the next step, we will see that this is similar to the likelihood ratio process for a normal experiment! Note
that we refer to this as ”local” ASN because the expansion was in the neighborhood of θ.

Note: the preceding derivation can be made rigorous under continuity conditions on the log likelihood
OR under the weaker condition that the model is QMD.

Formally: Suppose Θ ⊂ Rk is an open subset and the model {Pθ : θ ∈ Θ} is differentiable in
quadratic mean at θ. As stated earlier, Pθ ℓ̇θ = 0 and the FIM Iθ = Pθ ℓ̇θ ℓ̇

T
θ exists. Then for every converging

sequence hn → h, as n→ ∞:

log

n∏
i=1

pθ+hn/
√
n

pθ
(Xi) =

1√
n

n∑
i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oPθ

(1)

The asymptotic expansion of the local log likelihood hinges on the model being QMD. We can establish
QMD-ness via showing pθ(x) is differentiable and is dominated by an integrable function. Alternatively we
can use Lemma 7.6 VdV to establish QMD-ness. Or even better, we can establish QMD-ness for useful
classes of models!

Example 15 (QMD-ness and Local Asymptotic Expansion of Exponential Families (VdV Ex. 7.7)).
Suppose we have an exponential family of the form:

pθ(x) = d(θ)h(x) exp(Q(θ)T t(x))

If Q(θ) is continuously differentiable and map the parameter set Θ into the interior of the natural parameter
space, then the three conditions of VdV Lemma 7.6 are satisfied, making the exponential family model QMD.
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Additionally, the score function and information matrix are:

ℓ̇θ(x) = Q′
θ(t(x)− Eθ(t(X))) Iθ = Q′

θcovθ(t(X))(Q′
θ)
T

Thus, the asymptotic expansion of the local log likelihood is valid for most exponential family members.

Example 16 (QMD-ness and local asymptotic expansion of location models (VdV Ex. 7.8)).
Consider all location models {f(x − θ) : θ ∈ R} for a positive, continuously differentiable density f with
finite Fisher information:

If =

∫ (
f ′

f

)
(x)f(x)dx

The score function ℓ̇θ(x) can be equal to −
(
f ′

f

)
(x− θ), and the Fisher information is equal to If for all θ

and hence is continuous in θ. Then the location family is QMD and the asymptotic expansion of the local
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5 Hypothesis Testing

The intuition: suppose we observe some iid data from a distribution Pθ belonging to {Pθ′ : θ′ ∈ Θ ⊂ Rd}.
The objective is to test:

H0 : θ ∈ Θ0 against H1 : θ /∈ Θ0

Let ϕn be a test function, which outputs values on [0, 1]. Deterministic tests take on values 0 or 1,
while randomized functions can output a probability that we reject H0.

The power function denotes the probability of rejecting H0 based on the test ϕn:

πn(θ) ≡ Eθ[ϕn(X1, . . . , Xn)]

The Neyman-Pearson testing paradigm encourages us to choose a ϕn such that

• Type 1 error rate control: sup
θ0∈Θ0

πn(θ0) ≤ α

• Achieve high power at alternatives: make πn(θ) large for θ /∈ Θ0

How do we motivate these tests asymptotically? By defining an asymptotically α-level test.

Definition 17 (Asymptotically α-level tests).
A sequence of tests {ϕn}∞n=1 is a asymptotically level-α tests if:

lim sup
n

πn(θ0) ≤ α for all θ ∈ Θ0

5.1 Testing framework, Wald, Likelihood Ratio, and Score tests

Definition 18 (Testing framework and three famous parametric tests).
In our testing paradigm, we can split the data generating parameter θ := (ψ, η) where ψ is the POI and η
is a nuisance. So θ ∈ Rd, ψ ∈ Rm and η ∈ Rd−m.

Then Θ := T ×N where T ⊂ Rm and N ⊂ Rd−m where × is the tensor product. We consider θ on the
interior of Θ.

WLOG we can define the null parameter set Θ0 := {θ = (ψ, η) : ψ = 0}.

• If m = d, i.e., Θ0 = {θ = ψ = 0} which is denoted as a simple null hypothesis.

• Ifm < d, then the nuisance can take on values and Θ0 may have multiple elements, creating a composite
null hypothesis.

The following are three classic statistical tests:

1. Wald Test: motivated by the fact that we should reject H0 when an estimate ψ̂ is far from 0. We
know that for θ̂ = (ψ̂, η̂):

n1/2[θ̂ − θ] ⇒ N(0, I−1
θ )

=⇒ n1/2[ψ̂ − ψ] ⇒ N(0, A−1
θ ) by Woodbury Aθ = Iθ,11 − Iθ,12I

−1
θ,22I

T
θ,12

=⇒ n1/2A
1/2
θ [ψ̂ − ψ] ⇒ N(0, Idm)

Slutsky
=⇒ =⇒ n1/2A

1/2

θ̂
[ψ̂ − ψ] ⇒ N(0, Idm)

=⇒ n[ψ̂ − ψ]TAθ̂[ψ̂ − ψ]T ⇒ χ2(m)
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Which when ψ = 0, suggests rejecting H0 when Wn = n[ψ̂]TAθ̂[ψ̂]
T is larger than the (1− α) quantile

of χ2(m). Hence, we expect Wn
p→ ∞ so the test will attain asymptotic power of 1.

2. Likelihood ratio test: heuristically, the LRT compares DKL(Pθ, Pθ0) and will reject if the following
is too large:

inf
θ0∈Θ0

DKL(Pθ, Pθ0) = Pθ[ℓθ − ℓθ0 ]

=

∫
log pθ
log pθ0

Pθ(dx)

We allow θ0 ∈ Θ0 nonempty with potentially multiple elements. In practice, we don’t know θ so we
us a consistent estimator, so we replace Pθ by its empirical plugin estimator Pn and replace θ by an
unrestricted MLE θ̂. We give the likelihood ratio test statistic:

Ln := 2nPn[ℓθ̂]− sup
θ0∈Θ0

Pn[ℓθ0 ]︸ ︷︷ ︸
Restricted MLE

= 2nPn[ℓθ̂ − ℓθ̂0 ]

= −2

n∑
i=1

[ℓθ̂0 − ℓθ̂] (2nd order Taylor expansion next)

= −2

n∑
i=1

[ℓθ̂(Xi)− ℓθ̂(Xi) + (θ̂0 − θ̂)T ℓ̇θ̂(Xi) +
1

2
(θ̂0 − θ̂)T ℓ̈θ̃(Xi)(θ̂0 − θ̂)]

= −2(θ̂0 − θ̂)T
n∑
i=1

ℓ̇θ̂(Xi)− (θ̂0 − θ̂)T
n∑
i=1

ℓ̈θ̃(Xi)(θ̂0 − θ̂)

= −(θ̂0 − θ̂)T
n∑
i=1

ℓ̈θ̃(Xi)(θ̂0 − θ̂) (b/c score has mean 0)

= −
√
n(θ̂0 − θ̂)T [Pnℓ̈θ̃]

√
n(θ̂0 − θ̂)

Under H0, θ̂ AND θ̂0
p→ θ and Pnℓ̈θ̃

p→ Pθ ℓ̈θ = −Iθ. This implies:

Ln
H0= [

√
nIθ(θ̂0 − θ̂)T ]I−1

θ [
√
nIθ(θ̂0 − θ̂)T ] + oP (1)

We also know that:

√
n(θ̂ − θ) = I−1

θ

(√
n(Pn − Pθ)ℓ̇θ

)
︸ ︷︷ ︸

=Gnℓ̇θ

+op(1)

=⇒ (θ̂ − θ) = I−1
θ (Pn − Pθ)ℓ̇θ + op(n

−1/2)

And θ̂0 − θ
H0=

(
0

η̂0 − η

)
=

(
0

I−1
θ,22(Pn − Pθ)ℓ̇θ,2 + oP (n

−1/2)

)

Where ℓ̇θ,2 := ∇η log pθ and Iθ,22 ≡ Pθ ℓ̇θ,2ℓ̇
T
θ,2
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Combining these results we obtain:

√
nIθ(θ̂0 − θ̂) =

√
nIθ((θ̂0 − θ)− (θ̂ − θ)) + oP (1)

=
√
nIθ(Pn − Pθ)

((
0

I−1
θ,22ℓ̇θ,2

)
− Iθ ℓ̇θ

)
+ oP (1)

=
√
n(Pn − Pθ)

((
Iθ,11 Iθ,12
Iθ,21 Iθ,22

)(
0

I−1
θ,22ℓ̇θ,2

)
−
(
ℓ̇θ,1
ℓ̇θ,2

))
+ oP (1)

=
√
n(Pn − Pθ)

((
−[ℓ̇θ,1 − Iθ,12I

−1
θ,22ℓ̇θ,2]

0

))
+ oP (1)

CMT and Slutsky⇒
(
N(0, Aθ)

0

)
Thus, under H0

Ln = [
√
nIθ(θ̂0 − θ̂)T ]I−1

θ [
√
nIθ(θ̂0 − θ̂)T ] + oP (1) =

(
V T 0

)((Iθ,11 − Iθ,12I
−1
θ,22Iθ,21)

−1 . . .

. . . . . .

)(
V T

0

)
≡ V TA−1

θ V ⇒ χ2(m)

Thus, we should reject H0 when Ln is larger than the 1− α quantile of the χ2(m) dist.

3. Score test: Heuristically, scores have mean 0: Pθ ℓ̇0 = 0. Under when WLOG ψ = 0, H0 : Pθ ℓ̇(0,η) = 0.

Thus, the score tests rejects when the estimate of the latter expectation is far from 0. Let θ̂0 be the
restricted MLE over Θ0 and define Zn is our estimate of the latter:

Zn(θ0) :=
1√
n

n∑
i=1

ℓ̇θ0(Xi)
H0= 0 + oP (1)

Zn(θ̂0)
H0= 0 + oP (1)

So we showed our estimator should be unbiased and consistent for 0 under the null, but now we want
it’s limiting distribution under the null. Note we can break our estimator up into terms and show it
has asymptotic distribution under very similar arguments as for LRT:

Zn(θ̂0) = n1/2(Pn − P0)ℓ̇θ︸ ︷︷ ︸
CLT

+n1/2
(
Pθ ℓ̇θ̂0 − Pθ ℓ̇θ

)
︸ ︷︷ ︸

Delta method

+n1/2(Pn − Pθ)(ℓ̇θ̂0 − ℓ̇)︸ ︷︷ ︸
Donsker oP (1)

H0⇒
(
N(0, Aθ)

0

)
Therefore, the estimator:

Sn := [Zn(θ̂0)]
T Iθ̂0−1[Zn(θ̂0)]⇒χ2(m)

In practice: the tests are all asymptotically equivalent under the null! The score test has the advantage
of not requiring calculation of the unrestricted MLE. The Wald test has the advantage of not having to
calculate the restricted MLE. The likelihood ratio test requires calculating both, but has nice theoretical
guarantees in some cases (most powerful test under two point hypothesis). In small samples, the LRT and
score test offer better T1 error rate control than the Wald test.
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5.2 Contiguity

Contiguity generalizes the concept of absolute continuity to sequences of measures in asymptopia. In
other words, contiguity is ”asymptotic absolute continuity”.

Note that we care about absolute continuity because it allows us to change the integration measure
simply by reweighting the integration by the likelihood ratio! This allows us to take what we’ve learned
about distributions of test statistics under the null and define their distributions under the alternative (a
new measure)!

For instance: ∫
fdQ ≥

∫
f
dQ

dP
dP∫

fdQ =

∫
f
dQ

dP
dP ⇐⇒ Q << P

Definition 19 (Absolute continuity, orthogonal measures, Lebesgue decomposition).
Let P and Q be measures on a measurable space (Ω,A), then Q is absolutely continuous wrt P if P (A) =
0 =⇒ Q(A) = 0.

Furthermore, P and Q are orthogonal if Ω can be partitioned as Ω = ΩP ∪ ΩQ with ΩP ∩ ΩQ = ∅ and
P (ΩQ) = Q(ΩP ) = 0. An example of orthogonal measures on R is the counting and Lebesgue measures.

Lebesgue decomposition: for any two probability distribution P and Q, there exist unique measures
Qa(A) := Q(A ∩ ΩP ) (where ΩP := {p > 0} i.e., where density of P has positive support) and Q⊥ :=
Q(A ∩ ΩcP ) (where ΩcP := {p = 0} i.e., where density of P has no support), such that Q = Qa + Q⊥ and
Qa << P and Q⊥ ⊥ P . Essentially, any measure Q can be decomposed into absolutely continuous and
orthogonal components wrt P .

Theorem 35 (Lemma 6.2 VdV).
Let P and Q be probability measures with densities p and q with respect to µ. Let

Qa(A) = Q(A ∩ {p > 0}) Q⊥(A) = Q(A ∩ {p = 0})

For these measures

(i) Lebesgue decomposition: Q = Qa +Q⊥, Qa << P , Q⊥ ⊥ P

(ii) Qa(A) =
∫
A
q
pdP for every measurable A and likelihood ratio q

p .

(iii) Q << P ⇐⇒
∫
q
pdP = 1 ⇐⇒ Q = Qa and Q⊥ = 0

Proof: in VdV page 86

Contiguity is simply absolute continuity for sequences of measures.

Definition 20 (Contiguity).
A sequence {Qn}∞n=1 is contiguous with respect to {Pn}∞n=1 if Pn(An) → 0 implies Qn(An) → 0 for every
sequence of measurable sets {An}∞n=1. It is denoted by Qn ◁ Pn. Mutual contiguity is denoted Qn ◁▷Pn
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5.3 Le Cam’s Lemmas

Le Cam’s First Lemma generalizes part (iii) of Theorem 35 to asymptotic sequences of measures. I
provide a heuristic understanding.

The likelihood ratios are nonnegative and satisfy:

EPn

[
dQn
dPn

]
≤ 1 and EQn

[
dPn
dQn

]
≤ 1

This means that the likelihood ratios dQn

dPn
and dPn

dQn
are uniformly tight under Pn and Qn respectively, i.e.,

dQn

dPn
= OPn

(1) and dPn

dQn
= OQn

(1). By Prokhorov’s theorem, this implies that each sequence of measures
has a weakly convergent subsequence. Le Cam’s Lemma states that contiguity is determined by the limit
points of this sequence. In other words, we recast part (iii) of Theorem 35:

Q << P ⇐⇒
∫
EP

dQ

dP
= 1 ⇐⇒ Q

(
dP

dQ
= 0

)
= 0

By replacing the measures with measure sequences and their likelihood ratios with the limit points of their

likelihood ratios. For dPn

dQn

Qn⇒ U for a subsequence of Qn and dQn

dPn

Pn⇒ V for a subseqeunce of Pn:

Qn ◁ Pn ⇐⇒ EPn
[V ] = 1 ⇐⇒ Qn (U = 0) = 0

Theorem 36 (Le Cam’s First Lemma (VdV 6.4)).
Suppose Pn and Qn are sequences of measures on a measurable space (Ωn,An). Then TFAE:

(i) Contiguity: Qn ◁ Pn

(ii) Weak limit points of dPn

dQn
give mass 0 to 0 under Qn: if dPn

dQn

Qn⇒ U along a subsequence of Qn, then

P (U > 0) = 1.

(iii) Weak limit points of dQn

dPn
have mean 1 under Pn: if

dQn

dPn

Pn⇒ V along a subsequence of Qn, then E[V ] = 1.

(iv) For any statistics Tn : Ωn → Rk, If Tn
Pn→ 0 then Tn

Qn→ 0

Proof : in VdV pg 88.

The following special case plays an important role in the asymptotic theory of smooth parametric models.

Theorem 37 (Le Cam’s First Lemma – Smooth Parametric Models (VdV Ex. 6.5)).
Let Pn and Qn be probability measures on arbitrary measure spaces such that the likelihood ratio converges
weakly to a lognormal and the log likelihood ratio converges weakly to a normal:

Ln :=
dPn
dQn

Qn⇒ exp(N(µ, σ2))

logLn
Qn⇒ N(µ, σ2)

If this condition holds, Qn ◁ Pn. And Qn ◁▷Pn iff µ = −σ2

2 .

Proof : To show Qn ◁ Pn, let U = exp(N(µ, σ2)) by definition as in Theorem 36 part (ii). Note that U > 0
because the exponential guarantees that U is always positive. Thus Qn(U > 0) = 1 and by Le Cam’s First
Lemma, Qn ◁ Pn.
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To show Qn ◁ ▷Pn, we take the path of Theorem 36 part (iii) to show contiguity the other direction,
switching the roles of Qn and Pn. Let V := exp(N(µ, σ2)) as defined in part (iii), which is true because
dPn

dQn

Qn⇒ exp(N(µ, σ2)). Hence, V is obtained for any subsequence of Qn. Then E[V ] = E(exp(N(µ, σ2)))

equals 1 iff µ = −σ2

2 (since mean of a lognormal RV is exp(µ+ σ2/2).

Now we’re ready for the big one: Le Cam’s third Lemma, which allows us to obtain the limiting distri-
bution of a sequence of random vectors under laws Qn (an alternative distribution) based on laws Pn (a null
distribution).

Theorem 38 (Le Cam’s Third Lemma (VdV 6.6)).
Let Pn and Qn be sequences of probability measures on (Ωn,An) (set and sigma alg., often borel alg.) and
let Tn : Ωn → Rk be a sequence of random vectors (your test statistics). Suppose that Qn ◁ Pn and(

Tn,
dQn
dPn

)
Pn⇒ (X,V )

Define a new probability measure s.t. ∀A ∈ Rk, R(A) ≡ E(T,V )[I(T ∈ A)V ]. Then:

Tn
Qn⇒ R

Proof : VdV pg. 90

Many people use the User-friendly version of Le Cam’s third lemma!

Theorem 39 (User Friendly Le Cam’s Third Lemma (Ex 6.7 VdV)).
If the following is true: (

Tn, log
dQn
dPn

)
Pn⇒ Nk+1

((
µ

−σ2

2

)
,

(
Σ τ
τT σ2

))
Then:

Tn
Qn⇒ Nk(µ+ τ,Σ)

Proof : VdV pg. 90-91. Uses characteristics functions!

How do we find τ , the shift under the local alternative?
Note that local asymptotic normality gives us the fact that:

log
dPn

θ+h/
√
n

dPnθ

Pθ⇒ N

(
−1

2
hT Iθh, h

T Iθh

)
If we can write the estimator as:

√
n(Tn − θ) =

1√
n

n∑
i=1

ψθ(Xi) + oPθ
(1)

Pn⇒ N(0, Pθ ψθ ψ
T
θ )

If we know the asymptotic variance, we can work backwards to the influence function.
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Once we have the influence function, we can work back to the τ via the following fact:

(
√
n(Tn − θ), log

dPn
θ+h/

√
n

dPnθ

)
Pn⇒ N

((
0

− 1
2h

T Iθh

)
,

(
Pθψθψ

T
θ Pθψθh

T ℓ̇θ
Pθψ

T
θ h

T ℓ̇θ hT Iθh

))
One fruitful example is the distribution of the MLE:

Example 17 (MLE under local alternative).
Under a QMD model at inner point θ, with Lipschitz condition on the density, with nonsingular fisher
infromation, we showed that in Theorem 33 the following is true for the MLE:

√
n(θ̂ − θ) =

1√
n

n∑
i=1

I−1
θ ℓ̇θ(Xi)︸ ︷︷ ︸

Infl. func MLE

+oPn
(1)

If the model is QMD, we obtain a second order Taylor expansion of the log-likelihood enabling us to describe
the distribution of the log likelihood via LAN:

logLn =
1√
n

n∑
i=1

hT ℓ̇θ(Xi)−
1

2
hT Iθh+ oPn

(1)

≡ N

(
−1

2
hT Iθh, h

T Iθh

)
And thus, the log likelihood ratio and MLE converge to a bivariate normal distribution:(√

n(θ̂n − θ)
logLn

)
=

1√
n

n∑
i=1

(
I−1
θ ℓ̇θ(Xi)

hT ℓ̇θ(Xi)

)
+

(
0

− 1
2h

T Iθh

)
+ oPn

(1)

⇒ N

((
0

− 1
2h

T Iθh

)
,

(
I−1
θ h
h hT Iθh

))

Implying that
√
n(θ̂n − θ)

Qn⇒ N(h, I−1
θ ).

Thus, the asymptotic distribution of the MLE is invariant to local pertubations of θ!
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