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1 Measure Theory (The Basics)

Definition 1 (Basic measure theoretic definitions).
e A o-algebra on a set () is the collection of all possible outcomes or all subsets of a set (2.

o Given a probability space, (2 (set), F (o-alg.),p (prob measure)), a random variable is a measurable
map from the set to the real numbers: 2 — R.

o The distribution of a random variable X is defined as px = p- X ', meaning the probability measure
applied to the inverse map of the random variable (the set). The distribution of a random variable is
a measure on R.

e The Radon-Nikodym theorem says that under certain conditions, any measure can be described
using another measure defined on the same space by assigning a density to each point in space and
integrating over the measurable subset of interest. The strategy is like so:

v(4) = [ fa(u)
A
The function f, the Radon-Nikodym derivative, is defined as 9%, the derivative of one measure

dp
with respect to another.

e The probability density function is the Radon-Nikodym derivative of the distribution with respect

to the Lesbegue measure on R or RF: fx = df;f.

The dominated convergence theorem (DCT) is a very useful device that allows us to link pointwise
convergence of a sequence of functions to convergence of the integral of the sequence of functions. Essentially
provides conditions under which we can push the integral inside the limit.

Theorem 1 (DCT).
Suppose f, — f pointwise within a measurable space (€2, F, u) (of which a probability space is a special
example). Suppose f,, is dominated by some integrable function, i.e.,

£u@I <o@) st [ lgla)ldu< oo
for all n and z € Q. Then:

i, [ 12— fldu =0
©Js

n—
= lim fndu=/fdu

Note: this result is very useful in probability theory, because it allows us to swap limits and expectations.

Suppose X,, 2 X are random variables and Pr(|X,,| < Y) for some other random variable Y with E(Y) < oc.
Then:

lim E(X,) = E(X) =E ( lim Xn)

n—oo n— o0

It also allows us to swap integration (expectation) and differentiation.
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2 Decision Theory

Decision theory is a general framework that unites hypothesis testing and estimation. Based on a data
realization x, we can take an action a in the action space A.

1. Point estimation example: suppose = (i, )2, and objective is to estimate W(0) = u of a N(u,0?)
random variable. The action space may be A = R. A typical loss function is L(6,a) = |0 — a|?

2. Hypothesis testing example: suppose we want to test whether § € ©y or § € ©;. The action space,
A = {0,1}, denotes the choice of § € ©,. A typical loss function could be the modified 0-1 loss:
L(0,0) = yle, (8) and L(1,0) = lg,(6)

2.1 Basic terminology

Definition 2 (Decision rule, loss, risk).

e A decision function, D : X x.A — [0,1], D(a,z) = d(a|X = ), is a probability of action A conditional
on X = z. Decision functions/rules can be either stochastic or deterministic (with probabilities 0/1)—
we denote the class of all stochastic decision rules D, and deterministic decision rules 7.

1. Note: a particular decision is a random quantity that depends on variability in the data X and
variability in the decision a.

e The loss for a given action a, L(a, ), describes the quality of a decision at 6.

e The risk of a decision rule D at 6 is the expected loss, R(D,0) = [, [, L(a,0)D(alx)dPy(x). Notice
that the risk is the average loss, marginal over the two layers of randomness: the randomness of the
data and randomness of the decision. Smaller risk indicates better performance of a decision rule.

Example 1 (Neyman-Pearson hypothesis Testing: constrained minimax). We can consider hypothesis test-
ing under the Neyman-Pearson paradigm as a constrained minimax approach. Consider testing whether
6 belongs in Og or B4, with loss function L(0,8) = ¢yle, (§) and L(1,0) = Ig,(#). £y > 1 implies making T2
errors more costly than T1 errors. The risk:

R(6,D) / S L(a,0)D(a] X)dPy(z)
a=0

= / (ol (9)D(OIX) + Iy, (9)D(11X)] dPy ()

) Py(declaring 6 € Q) = type 1 error if 0 € O
) 4P (declaring 6 € Qg) = £y X type 2 error if § € O

The Neyman-Pearson paradigm advocates choosing decision rule D* s.t.

sup R(D*,0) = inf sup R(D,0) subject to constraint sup R(6,D) < «
0€0, D€Dyeo, 0€60

2.2 Bayesian Inference
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Definition 3 (Bayes risk, Bayes rule).
In the Bayesian paradigm, we define a prior distribution 11 on the parameter space ©. The Bayes risk of
a decision rule D is the expected risk of D over the the prior on 6:

r(D,TI) = / R(D, 0)dIi(6)

A Bayes rule, Dy is optimal with regard to the Bayes risk

r(Dr, IT) = DnéfDr(D,H) = 5IéprH l/A L(a,0)D(da|z)

X_x]

Definition 4 (Prior, Posterior, Kernel, Conjugate Prior). Let IT be a prior distribution on ©. Let p(X|0)
and 7(6) be associated densities. The posterior distribution of |X = z is defined as:

v

plolo) = 22

)
p(z|0)7(6)
~ Jo p(@]0)T1(de)

The kernel of the posterior is a function f such that the posterior distribution factorizes into a component
that depends on X only, ¢(X), and f, a component that depends on both X and 6:

p(Olz) = c(x) f(z,0)  f(z,0)

Importantly, the kernel uniquely determines the distribution.
A conjugate prior is a prior that belongs to a family Pry, and ensures for almost all x, the posterior
distribution P(6|z) also falls in Pr: the posterior belongs to the same family as the prior.

Strategy 1 (Finding the posterior). One can find the posterior by setting it proportional to the conditional
likelihood times the prior, and factoring to identify the kernel. For example, suppose X |6 ~ Pois(d) and
0 ~ Gamma(cw, 3)

p(8lz) o< p(z|0) x m(0)
—ob” B ga—1,—B6

2 ')

_ Boz rx+a—1 —(B+1)
I (a)a! ————
SN—— f(=,0)

c(z)
o 0x+a7167(ﬁ+1)0

Which is the kernel of a Gamma(a + z, 5 + 1), so 0|a ~ Gamma(a + z, 8 + 1).
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Theorem 2 (Existence of deterministic Bayes Rules (Thm 1.3.2)).
If L(a, ) is convex for all § € ©, D is unrestricted, A is a convex set, and there exists a Bayes rule Dy € D,
then there exists a deterministic Bayes rule — i.e., a Bayes rule D(-, z) that places point mass at a, € A.

Proof: by assumption, Dy € D is a Bayes rule. Choose D;(:|z) to be a distribution that places a point
mass at [ aDr(a|z), the expected action under Dry(-|z). Clearly, D; is deterministic because it is a point
mass. D; is a Bayes rule because, via Jensen’s inequality:

L(a,0)D;(dalz) = L (/aDH(dax),9> < /L(a,@)DH(da\x) < /L(a,@)D(da\x)

Jensen

Example 2 (Point estimation with squared error loss).
Suppose our objective is to estimate W(6) with squared error loss L : (a,0) — {a — 1(0)}>.
Let f, be the Bayes risk function:

fe:a—E[(a—9(0)3X = 2

Then the Bayes rule elects the action that minimizes the Bayes risk: Dy : @ — argminf, (a).
acA
If we differentiate the Bayes risk function:

L 12le) = 2(a ~ EWOIX = 1))
difz(a) =0 = argminf,(a) = E(V(0)|X = x)
a a€A

Thus, the posterior mean is the Bayes rule under a squared loss.
For example, suppose:

X|6 ~ Poisson(d) 6 ~ Gamma(a, )
= 0|X =z ~ Gamma(a + z,8 + 1)

To estimate 6 using mean squared error, the Bayes rule is the posterior mean, which is just a convex
combination of the MLE and prior mean:

e+ s

Th:z —

B+1 pB+1

Example 3 (Point estimation with absolute deviation loss).
Suppose our objective is to estimate ¥(6) with squared error loss L : (a,8) — |¢(0) — al.

Notice that % = sign(a). We want to find Tj; : # — argmin E [{|¢(0) — a||X = z}].
acA
When we differentiate we obtain:

d

= fula) = E [sign(/(6) — a)] = 0

= a = median(y(0)|X = x)
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2.3 Minimax framework

The minimax framework concerns itself with trying to find the decision rule with the smallest maximal
risk. There are two key ways to construct minimax estimators, 1) via information theoretic approaches and
2) by building connections to Bayes rules. We focus on the second strategy.

Definition 5 (Minimax).

The minimax framework posits that we should prefer decision rules with lower maximal risk. A minimax
rule is optimal with respect to the maximal risk criterion, meaning it achieves the smallest maximal risk
over all decision rules:

supR(D*,0) = inf supR(D, 0
eeg ( ) DE'Deeg ( )

Definition 6 (Least favorable prior).
A prior is a least favorable prior if it (and its associated Bayes rule) yields the maximum Bayes risk:

T(DH*aH*) = sup T(DHa H)
II

The following theorem establishes a connection between Bayes rules and Minimax rules.

Theorem 3 (Theorem 1.4.2).
If II and the Bayes rule Dy have a bayes risk (optimal wrt IT) equal to the maximum risk of Dy over all
6 € © (maximmal), i.e.,

r(Dm, II) = sup R(Dr, 6)
0

Then,
1. Dp is minimax.
2. If Dy is a unique Bayes rule, then Dy is the unique minimax.

3. II is least favorable.

Proof:

1. Consider a general D € D, then:

supR(D, 6) > / R(D,0)II(dF) (Max > average)

0O e

Z/R(DH,H)H(dH) (D, optimal)
e

=sup R(D,,0) (Assumed condition)
0co
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2. If D, is unique, then [R(D,0)II(df) > [R(D,,0)I1(dd) = supR(D,0) > supR(D,,0), showing
0o )
D, is unique minimax.

3. To prove II is least favorable, consider another prior IT':

r(Dn,II') < r(Dp,II')  (Bayes rule optimal)

<supR(D,,0) (Max > average)
0€6

= r(Dy,II)  (Theorem condition)

Theorem 4 (Corollary 1.4.3).
If IT is a prior s.t. R(Dr,0) is constant, i.e., R(Dr, 6) does not depend on 6, then Dy is minimax.

Proof: trivial. If Dy has constant risk than r(Dr, IT) = supR (D, 6), so we can apply Theorem 1.4.2 to
[USC)
obtain minimaxity of Dry.

By defining (least favorable) sequences of priors and taking the limit, we can begin to explore behavior
of Bayes estimators under improper priors.

Definition 7 (Least favorable sequence). Let {II;;k =1,2,...} be a sequence of priors on © and let:
ro := liminf r(Dyy, , )
k—o0
A sequence is a least favorable prior sequence if VO:

r(Da, ) < 7o

We can generalize Theorem 1.4.2 to the setting of prior sequences:

Theorem 5 (Theorem 1.4.7).
Suppose {II;} is a prior sequence and let rg be as defined in Definition 7. If D € D satisfies:

sup R(D,0) = rg
6cO

Then D is minimax, and {II;} is a LFP sequence.

Proof: Consider a general decision D’ € D then for all k = 1,2,.. .

sup R(D',0) > / R(D', 0TI (d6)
) ©

> r(Dm,,, I1i)
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Since this was true Vk:
sup R(D',0) > liminf r(Dyy, , I1x)
9 k—o00

= sup R(D, 0)
6co

Thus, D is minimax. To show that {II;} is a LFP sequence, consider any II:

r(Dr, II) < r(D,1I)
<sup R(D,0) =g
0

Example 4 (Sample mean is Minimax under normal mean model).
The general proof idea is to show that the risk of the sample mean is constant wrt €, then define a prior
sequence that achieves the bayes risk equal to the constant risk asymptotically with k. Then we can apply
Theorem 1.4.7 to show minimax.

Xq,..., X, - N(6,0?) with 02 known (with squared error loss). We claim X, is minimax. For T : x —
Ty, R(T,0) = 0 /n which is constant wrt @, implying:

o2

sup R(T,0)
0

To show that X, is minimax via Theorem 1.4.7, we need to find a prior sequence such that ry :=

0_2

7 °

Let Iy := N (0, k). Under this model, the posterior distribution is:

lim T(Dr[k B Hk) =
k—o0

Tan/o? 1
0| X =x~N
| * (1/1{:—}—71/02’ 1/k+n/02>
ZTan/o?

= Iy, v — is Bayes

1/k+n/o?

Let Ej is the expectation with respect to 6 ~ Il and X|0 ~ N(6,02). Then asymptotically:
Tan/o? P ?
1/k+n/o?

Thus lim r(T1,, 1) = lim E [(i‘n - 0)2] =2 —p.
k—o0 k—o0

k—oo

_E [(:zn - 9)2} =)

(T, , i) — Ey, [(zn . 9)2} — B

But we had just showed that sup R(T,0) = %2 = rg, implying that T : * — Z,, is minimax by Theorem
0
1.4.7.

Theorem 6 (Lemma 1.4.9).
Let P; C Py denote two models. If D; is minimax over P; and:

Sup R(th) = sup R(th)
PeP; PeP2

10
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Then D; is also minimax over Ps.

Proof: STAC that D; is not minimax over Ps, then there exists Dy € D s.t. Dy achieves a smaller worst
risk in Py. Then:

sup R(Dz, P) < sup R(D2, P)  (b/c P1 C P»)

pPep, PEP,
< sup R(D;y,P) (by D; not minimax)
PeP;
= sup R(D1,P) (by condition (ii) in theorem)
PeP,

But this shows that D; is not minimax over Py, which is a contradiction. Thus, D; must be minimax over

Po.

Example 5 (Sample mean minimax under bdd variance). ~
If we consider Py = {P = Q",support(Q) C R, Varg(X) < 02}, then X,, is minimax wrt Py. This is because

R(T,P) = %2 which is independent of P5, therefore, the max risks are equal between P; and P5.By Lemma

1.4.9, X, is also minimax over Ps.

2.4 Admissibility

Admissibility is the ”lowest-bar” criterion for an estimator or decision — essentially, there does not exist
another rule that is uniformly as good or better based on the risk criterion.

Definition 8 (Admissibility).
A minimal requirement for a good decision rule is that there does not exist a uniformly better rule. A rule
D is called inadmissible if there exists another rule D s.t.

R(
R(

D,6) < R(D,0) for all § € ©, and
D,6) < R(D,6) for some § € ©

The rule is called admissible otherwise.
Definition 9 (Uniqueness of Bayes and Minimax Rules).

For a prior II, a rule Dy is unique Bayes if a rule is Bayes iff it is equal to Dy a.e. Py.
A rule Dx is unique minimax if a rule is minimax iff it is equal to Dx a.e. Py.

Theorem 7 (Admissibility of unique Bayes/minimax rules: Theorems 1.5.2-1.5.4).
Any unique Bayes/minimax rule is admissible.

11
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Proof: 1. STAC that Dy is unique Bayes but not admissible. Then 3D € D s.t.

R(D,0) < R(Dy,0) V6 e0O
R(D, 0%) < R(Dr, 6%) for some 0% € ©
However, this implies r(D, II) < r(Dy,II) = r(D,II) = r(Dyy, IT) since the Bayes rule is optimal. However,
this implies that the Bayes rule is not unique, yielding a contradiction, and showing that a unique Bayes

rule must be admissible.
2. STAC that D* is unique minimax but not admissible. Then 3D € D s.t.

R(D,0) < R(Dy,0) Vo €O
R(D, 6%) < R(Dm, 6%) for some 0% € ©
But since D* is minimax (sup R(D*,0) = i%f sup R(D,0)), sup R(D,0) = sup R(D*,0), because D*
0 0 0 0

achieves optimal max risk and D is uniformly as good or better by the risk criterion. However, this yields a
contradiction, because we showed two distinct rules yield the same minimax risk despite assuming D* was
unique minimax. Thus, we conclude D* is unique minimax.

Unique Bayes/minimax rules guarantee admissibility! How do we find these rules? Some helpful theorems
will come in handy!

Theorem 8 (Unique bayes rule: Theorem 1.5.5).
Let II be a prior and Dy be the associated Bayes rule. If the following hold:

(i) The loss function is squared error loss
(i) 7(Dp, ) < 0o

(iii) Py << @ (probability measure is absolutely continuous wrt some marginal measure): for any subset
A of the o-algebra A, Q(A) = [ Py(X € A)dII(f) =0 = Py(X € A)=0forall§ € ©

Then Dy is unique Bayes.

Proof left available in paper by Larry Brown.

Addendum: a sufficient condition for item (iii) is that as long as we can find a new measure 7 (not
necessarily a prob measure) on the measure space, s.t.

Py<<n AND n<< P

Condition (iii) holds. A useful example of this is that the normal distribution is absolutely continuous wrt
the Lesbegue measure and vice versa.

Proof: Fix 0y € ©. The goal is to show Py, (4) >0 — Q(A) > 0. Suppose Py, (A4) > 0, because lemma
conditions say:

Py, <<n = ifn(4) >0 = Py(A) >0vV0€0O

— QU = [ Py >0

>0

12
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Example 6 (Bayesian normal mean/sample mean is admissible).
X1,...,X,|0 o N(#,0?) and 6 ~ N(u,72)
— 2

We can show that 11y : ¢ — (1 —P,) - X,, + P, - p with P, := 1/17/5% € (0,1) is admissible using Thoerem
1.5.5. (i) is trivial, (ii) follows because optimal, and the Addendum and knowing that Py << A and A << Py
where ) is the Lesbesgue measure and Py is N (6, 0?) shows that it is unique Bayes and therefore admissible.

However, this begs the question of whether the Bayesian normal mean is admissible when P, = 0, 1.
When P, =0, T : x — p is admissible because it is a constant estimator that achieves Risk of 0 when the 6
is . When P, =1, T : x — T, is minimax and admissible, but this requires a rigorous proof.

Proof: Claim: X,, is admissible in normal mean model. X1,...,X,, ~ N(#,0?) where 0 known and 6 € R.
For all rules, we will establish admissibility by proving:

(a) R(T1,0) > R(T,0)V 6
(b) there exists § € © for which R(Ty,6) > R(T,0).
WLOG consider 02 = 1. Then there exists §; € © at which:
R(T1,61) < R(T, 01)

Since the risk function is continuous, we can build a J-bubble around 6; where the risk difference is greater
than some e:

1
R(T1,0) < R(T,0) —e=——€¢ for 6 € (6, — 0,601 +0)

n
Let’s specify a prior I, = N(0,72) and let T := Ty, be the Bayes estimator wrt this prior. Via some
algebra, we obtain:

72 1 1
T 0.)— R(T,0)=— — — =—
( ) (T,9) 1+nr2 n n(l + nr2)

Thus,

1

- =r(T:,1I;) —
n(l + nr2) 3 )

(B/c optimality bayes rule)

SI= 3|~

S T(T17H7—) —

/ [R(Tl, 0) — ;] 1L, (d9)

_ / [’R(Tl,G) _ :L] " 1L (d6) / [R(Tl, 6) — H IL(d9)  (Splits pos and neg regions)

Recall that for §; € (0 — 6,6 +6), R(T1,61) < 1 —¢ = R(T1,0) — 1 < —e = [R(T1,0)— 1] >«
Therefore:

/ [R(Tl,e) - H_dHT(G) > / e [R(Tl,e) - H I, (0)

61—0

01+
26/ AT, (0) = e[ (61 — 6 < © < 6y — 5)
0,—0

IHlpl y ing:
/ R(T 9)—7 HT(d9)>_7+€H (9 —0<0O<H —5) '——L(T)

13
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Note that:

V2rrL(t) =3 2¢6

Because =2 =% 0 by LH rule and v2r7Il (601 — 6 < © < 61— ) = [, " exp(—50%) =

26¢=9°/27" "% 25 Now choose 7 > 0 s.t. V2r1oL(7) > d€ and plug-in:

11t Oe€
R(T1,0) — —| II.(df) > L(mo) > >0
[ |Raor- 1] motan > s > 2
We just showed that there exists a 6 for which R(T7,60) > R(T,0) = 1/n implying that condition (b) holds.
So either T has uniformly lower/equal risk (as in case (a)) or T has a lower risk for some 6 (as in case (b))
for a general estimator 77. Thus, T is admissible!

2.5 Inadmissibility of the sample mean in dim > 3

Turns out that the sample mean is inadmissible in higher dimensions under MSE loss, because as the
dimension increases, the distribution’s mass gets pulled further into the tails and the sample mean vector
increasingly deviates from the true mean.

Under Xq,...,X, e N(6,0%1;), Charles Stein proved that T is inadmissible when d > 3 by intro-

ducing an estimator that dominated 7" under d > 3, the James-Stein estimator.

Definition 10 (James-Stein Estimator). The James-Stein estimator is as follows

795 .2 > (1 - —n(\f;ﬁ?) Tn if Z, #(0,...,0)
0, otherwise

Note that it is just a shrinkage of the sample mean estimator towards 0, where shrinkage is controlled by
the dimension, sample size, and ||Z,]|.

Important: despite the observations being independent, the shrinkage property ensures that the estimate
of 6; depends on X}, despite X; being independent of X, and 6; and 6} being variationally independent.

Theorem 9 (Stein’s Lemma (Lemma 1.6.2)).
Let Y ~ N(u,0%1;) and let gy,...,g4 be R — R functions such that E ‘ Dy; Ji (y)]ly =Y| < oo. Defining

g:y—(91(y),.--,94(y)) we have:

d
Bllg(v),Y ~ ] = oY -g1)]  where V-g(¥) =3 ai

Proof: Step 1 is to show for Y ~ N(u,0%) and g : R — R s.t. E(¢'(Y)) < oo:

Elg(Y)(Y = w)] = o’E[g' (V)]

14
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Note:
1 > (y—0)2 /(252
Bl — ) = = [ gla)(y— o)/ ay
B [ /°° J (g)e=-07/@) gy
2o —0
=0
= o’E[g'(y)]

By Fubini’s theorem, multiple integrals over each dimension can be reduced to iterated integrals because
the expected absolute value partial derivatives are all finite (condition required for Fubini’s theorem). This
yields the multivariate result!

Theorem 10 (James-Stein estimator dominates the sample mean). Consider the simplifed setting where
X1,...,X, ~ N(60,1;) and the J-S estimator takes the form:

IS (1- &)= it #0,...,0
0 else

Then we write the risk as:

R(T7%,68) = E[||7"*(IIX])X - 6]1%]
E(lll="5(1X11) = 11X + [X — 6]||’]
E(lll="®(11X11) — 11X|[*] + E[||X — 6]
E

|-
[ﬁ§$1+ngw> 2042 {3

2E[([1 - 775 (|IX D)X, X — 6)]

<)
/]

which shows that R(T7%,0) < R(T,6).

The goal will be to show that term 3 is equal to —2E [

We so via Stein’s Lemma, letting g; : ¢ — W’ we see that:

M&

222 .
HZ||2 — HZ||4 (Quotient rule)

g=1
d 2P d-2
Sl T2 (2l

Thus, the third term is equal to —2(d—2)E(V-g(y)) = —2(d—2)’E |:H)g||2

R(T, 0) for all 6.

} as desired, proving R(T7%, 6) <

15
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3 Elementary Asymptotics

Asymptotic statistics allows us to evaluate statistical procedures on the basis of increasing sample size
and repeated sampling from the superpopulation.

3.1 Modes of convergence

Definition 11 (Convergence almost surely, in probability, and in distribution). The following definitions
concern a sequence of random variables {X,,}>° ; and a random variable X defined on a common probability
space (2, F, P).

Almost surely convergence: a sequence of random variables converges almost surely to X if:

P(lm X, ~X||=0)=1 = lim[|Xs(w) - X(@)||=0
Convergence in probability: a sequence of random variables converges in probability to X if:
P(||Xn — X|| > € =30

Convergence in distribution: a sequence of random variables converges in distribution/weakly con-
verges to X iff or all bounded continuous functions f : R¢ — R

E[f(X,)] — E[f(X)] asn — oo

Note that boundedness and continuity are essential to the definition of weak convergence.

e Suppose we didn’t require f be continuous. Let X,, = 1/n and let f:a — I(a > 0). E(f(X,)) — 1
which does not equal E[f(X)] = 0, so X,, would not converge in distribution to 0 despite converging
in every other sense (a.s., in prob).

e Suppose we didn’t require f. to be bounded. Let X, = n w.p, 1/n and X,, = 0 otherwise. Note
that X,, converges in probability to 0 (b/c the probability mass increasingly gets concentrated at 0
as n — oo. Let f : a — min(Jal,1) and g : a — a. Then E[f(X,)] = 1/n — 0 where the limit
equals E[f(X)] iff X 0. However if X 2 0, E[g(X,)] — 1 and E[g(X)] # 1. Thus, convergence in
distribution can’t hold despite convergence in prob.

Note in addition that convergence a.s. = convergence in prob = weak convergence.
The Portmanteau theorem provides linkage between the many definitions of convergence in distribution!

Theorem 11 (Portmanteau).
Let {X,,}22, be a sequence of random variables and X be a random variable. TFAE:

1. E[f(X,)] — E[f(X)] as n — oo for all bounded continuous functions f.
2. For all continuity points t € RY, P(X,, <t) — P(X <t) as n — oo.
3. ... MANY others

4. Levy’s continuity theorem: for all t € RY, Elexp(it’ X,,)] — E[exp(itT X)], convergence in charac-
teristic functions

5. Cramer-Wold device: for all t € R?, t7X, — 17X

16
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3.2 Continuous Mapping Theorem and Slutsky’s Theorem

CMT and Slutsky’s theorem allows us to describe the behavior of functions of convergent sequences!

Theorem 12 (Continuous Mapping Theorem). Let X,, be a R%-valued sequence of random variables and
g : R4 — R™ be continuous at every point of a set C s.t. P(X € C) = 1, the following are valid:

(i) if X,, = X, then g(X,) = g(X)
(ii) if X, & X, then g(X,) % g(X)

)

)
(iii) if X, “3 X, then g(X,) “3 g(X)
(iv) if X, = X and || X, - Y,,|| 20, V, = X
)

(v) of X, = X and Y;, 5 ¢, then (X,,,Y,) = (X,¢)

Theorem 13 (Slutsky’s Lemma). Let X,, be a R?-valued sequence of random variables and X,, = X. If
the R%valued random variable Y, satisfies Ynlc) for a constant ¢, then the following are valid

i) Xp+Y,=X+c
(i) X, Y, =>c¢- X
(i) X,/Y, = X/cifc#0

3.3 Law of Large Numbers and Central Limit Theorem

Law of large numbers allows us to describe the consistency of the sample mean, while the central limit
theorem yields the asymptotic normal distribution of the sample mean.

Theorem 14 (Law of large numbers). For Xi,..., X, “4 P and letting X,, = % > X,

WLLN: if Ep|X| < 00, X,, == Ep[X]
SLLN: if Ep|X| < 00, X, &5 Ep[X]

Theorem 15 (Univariate CLT).
For the moment, we assume that the CLT under a univariate parameter drawn iid from a fixed distribution
P. If Ep(X?) < oo, then where 0% := Varp(X)

Vi(X, —EplX]) = N(0,0%)

17
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Example 7 (t-statistics). -
The goal is to show that the t-statistic: /nX,, /S, = N(0,1) when E(X) = 0. To do this, we write:
E(X X, -EX N(0,0?

- TS, T S, S,

Now it suffices to show that S,, 2 o = 52 2 2. We do so via WLLN: X,, % E,(X) and Ly x? 5 E(X?),

and %5 % 1. Hence:

<Xn,Yn, nfl) 2 (E(X),E(X?),1)

n

1 _
n_l[EZXf—XfL} £ 6% (by CMT)

Thus, by CMT S,, — o, yielding that ¢ — N(0,1) when E(X) = 0.

3.4 Stochastic Order Notation and Prokhorov’s Theorem

Suppose we have two real valued sequences of random variables X,, and R, and we which to compare
the magnitude of the two sequences as n — co.

Definition 12 (Big-O and little-o notation).

(i) X, = Op(R,,) means that X, is within a multiplicative constant of R, i.e., x,, variable is stochastically
bounded. In other words
X
Pl |=2
(1

Meaning we can find a tail in the sequence (n > N) such that the probability of the ratio being larger

than some constant number (§) is essentially 0. In other words, z, is asymptotically within a finite
n—oo

constant of r,,. Equivalently, for all € > 0, there exists an M > 0 s.t. liminfP(|X,| < M|R,|) — 1—
n—oo

>5)<e,Vn>N

(ii) X, = o(r,) means that x,, grows more slowly than r, and refers to convergence in probability towards
0. X,, = 0p(1) means:

lim P(|X,|>¢€) =0¥,e>0 = X, >0

n—oo
While X,, = 0,(ry,) means:

n n Xn
s Tze):ov,e>0:>—$o

=o0,(1) = lim P( "

P n—00

n—oo

Equivalently, for all M > 0 s.t. P(|X,| < M|R,|) — 1

The Prokhorov theorem shows that if a sequence converges in distribution then it is bounded in probability
(uniformly tight), and if it is bounded in probability (uniformly tight), it has a convergent subsequence (ala
Bolzano-Weierstrass).

18
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Theorem 16 (Prokhorov).
Let X,, be a random vector in RP.

(i) If X,, = X for some X, then X,, = O,(1)
(ii) If X,, = Op(1), there exists a subsequence {X,,;} C {X,} such that X,; = X for some X.

Note that X,, = O,(1) means is referred to as the sequence being uniformly tight.

Theorem 17 (Operations using big/little-o notation).

1. X, =op(R,) iff X,, = R,Y,, for some Y,, = op(1)
2. X, =Op(R,) iff X,, = R,Y,, for some Y, = Op(1)

3. op(1) + op(1) = 0p(1) (sum of two things that conv in prob to 0)

4. op(1) 4+ Op(1) = Op(1) (sum of thing that conv in prob to 0 and bdd in prob)
5. Op(1) - Op(1) = Op(1) (product of two things bdd in prob)

6. op(1) - Op(1) = op(1) (product of conv in prob to 0 and bdd in prob)

7. 1+op(1)]7t =0p(1)

8. X, =op(l) = X,, =O0p(1) (conv in prob to 0 implies bdd in prob)

We can use big/little-o notation to explore the convergence rates of common estimators!

Example 8 (Convergence rates of sample mean and variance).

Sample mean: Suppose X1, ..., X, < P and E,[X?] < co. By CLT, v/n(X,, — Ep[X]) = N(0, Varp(X)).
By Prokhorov’s theorem, this implies \/n(X,, — Ep[X]) = Op(1) yielding X,, — Ep(X) = Op(n_l/Q), the
convergence rate of the sample mean to the population mean based on CLT.

Sample variance: Suppose Xq,..., X, % P and E,[X?] < co. We also know that:

n

2 N 1 2 2
Sn_nfl (nZ(Xi)_X”>

i=1

Where by CLT: 13" (X2) = Ep(X?) + Op(n~/?) and X, = Ep(X) + Op(n~Y?) and (X,)? =

(Ep(X) +()1,J(7f1/2))2 = Ep(X)? + O0p(n™/2) + Op(n™1) and since O,(n~Y2) + O,(n™1) = O,(n~1/2),
then:

n

— (B[ X?) + Oy (n7/%) = (Ep(X)? + Oy (n™/%)))

- (o +0rtr7)

Thus, S2 — Var,(X) = O,(n™1/?)

19
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3.5 Multivariate and Lindeberg Feller CLT

We presented the Central Limit Theorem only in the case of univariate observations iid from some
fixed distribution. Here, we generalize the result to multivariate iid observations and general independent
observations (not required to be identically distributed).

Theorem 18 (Multivariate CLT). Suppose X1,..., X, %9 P where P is fixed distribution with support in

R? and Ep[||X||?]. Then
V(X — ) = N(04, %)

Where p := E[X] and ¥ := Ep[(X — p)(X — p)7]

Proof: use the Cramer-Wold device. Fix t € R? and Y,, = t” X,, meaning Y,, is the sample mean of the iid
observations Y; := tT X; for all observations X;.
We can confirm the bounded second moment of ¥; via the Cauchy Schwartz inequality (E[XY] <
E(X?)E(Y?)):

d d d d
c-s
E[Y1] = Zztjtk]E[le7X1k] < Zzt thE[X)Y? - E[X3]
Jj k i k

d d
<EIXaPID ) ftstkl < oo
Thus, we can apply the univariate CLT, where E(Y;) = T i1, and Var(Y;) = Var(t7Yy) = tTVar(X;)t =
tT'se
V(X, —tTp) = N(0,tTSt)
Thus,

(T IVA(Ta — )] = N(0,£751)
= \/E(Xn — ) = N(0,%)

Can we generalize to independent (but not identical) observations? The LF CLT is the way to do it!

Theorem 19 (Lindeberg-Feller CLT). For each n, let {X,,;}" ; be an independent collection of R-valued
random variables. Suppose that the means p,,; := E(X,,;) and variances 02, := Var(X,;) exist and are finite.
Suppose 02 = Z? q 02, > 0 for all n. Finally let V,,; = (Xpi — ftni)/0n. If the Lindeberg condition holds:

for all € > 0, ZE I(|Y > €)] =370

then
> Yni = N(0,1)
i=1
Note: we can also replace the Lindeberg condition with the Lyapunov condition:

Z]EHY@*‘SH "% 0 for some § > 0

=1
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Example 9 (OLS is ASN).
We can use the LF-CLT to show that the OLS estimator under a fixed design, 8 is ASN. Using the orthogonal
decomposition of the OLS estimator we obtain:

B = (XTX) ' XTY = (XD X,) "' XT(XB + n)
=B+ (X7 Xn) ' X, €n
— (XTX)V2(B— 8) = (XI X))V 2e,
Goal is to show RHS converges weakly to N(0,02I;y1) random variable. We execute the proof in steps:

1. Cramer-Wold device: for a,; being the ith column of (X! X, )~ /227"

n
tT(Xan)il/sz;Gn = Z(tTam')Ei
i=1
and observe that:

afw- o= Var([tTam]ei) = [tTam]QVar(ei) = [75T6L7“4]2<72

Hence:

n n
2 _ 2 _ 2 T 12
o = E oL, =0 E [t ani]
i=1 i=1

= 0T (XT X)X X (XT X /2 = o) ]
2. Defined scaled RV and write out Lindeberg condition: Define Z,,; = “Tgiz)e For fixed € > 0:

> EIZ31(1Zil = €]

n
> E[Z21(1Zni > )] = 0,2 (tT ani) B2 I([t7 ansllei| > one)]
=1l

- [z

=1

= o072 maxE[I([tT ani||e;] > ope)]  (B/c o2 = o?||t]|?)
1

?| maxB[e 1 (|t anillei| = one)l

4. Cauchy-Schwartz to the expected value statement

2 T ©=9 2
max B[ 1(|t" anil|e:| > one)] < maxB[eI(|[¢][[|ani]lei] > one)]

= maxB[I(|[t|l[|ans]lei] > o€)]  (b/c on = olft]])

5. Dominated convergence theorem (DCT) to establish convergence criterion

maxB[&T(|[t]] - [lani| - [&;] > o€)] << E[€} I(max||an]| > €)]
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Thus, if max||an;|| i-e., the maximum leverage goes to 0, then by DCT, the Lindeberg condition
(2
holds. This implies

tT(XTX,) 722 e, = N(0,02||t]|?) = N(0,t7 [02I441]t)
Thus,

(XTX,) 2z e, = N(0,0%I441)
= (XTX,)'2(B - B) = N(0,0%I441)

3.6 Multivariate delta method

Suppose that Xi,..., X, d Py, from a collection of distributions M = {Fy : § € O} with support on

R?. Suppose ¢ = ¥(fy) € R? is an arbitrary function of the input parameter and 1), (an estimate of )
satsifies:

Tn('(/)n - wO) =7

for some weak limit Z and sequence of reals r,, — oc.
Suppose we are interested in estimating f(1) where f : R? — R is differentiable at ¢. The following
theorem allows us to calculate the limiting distribution of f(w,,):

Theorem 20 (MV Delta method R? — R).
If f:R? — R is differentiable at ¢y and 7, (1, — 1) = Z holds, then:

F@n) = F(0) = (bn — b0, V.f(¢0)) = 0p(r;")
= 1u(f(¥n) = F(¥0)) = (2, Vf(¢0))

Proof: f is differentiable at ¢q iff f is uniformly converging to 0, i.e., g is continuous at 0 for:

sup |f(¢o+6h)—f(wz)—e(h,Vf(wo))| if e £ 0
g : € — < heR%||h]|=1

0 otherwise

Note: that we can replace the uniform convergence condition with the condition that f is partially
differentiable in a neighborhood about ©g AND the partial derivatives are continuous.
Let €, = ||ton, — ¥o]| and let:

0 else

M%w-wwnﬁ%¢o

Then:

[f(¥n) = f(%0) = (¥n = to, VF(%0))| = [ (%0 + €nhn) = f(%0) = €n{hn, V f(10))]

< sup |f(Yo +enh) — f(t0)—n, V f(%0))]

h:||h]|=1
= Eng(n)

We know 7y, (¢, — 10) = rn(enhn) = Z and hy,, = 0,(1) therefore €, = O,(r;'). As n — 0o, €, = 0,(1).
By CMT g(n) = 0p(1) 50 €ng(n) = 0p(r").

A
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Thus | f(vn) — f(%0) — (¥n — Yo, VF(%0))| = op(ry ).
Since the first and third terms would cancel we obtain:
T (f(¥n) — F(0)) = (rn(¥n — ¥0), V(o)) + 70 (f(¥n) — f(%0) — (¥n — %0, V£ (¥0)))
op(1)
= (Z,V (1)) (by CMT and Slutsky)

Can we generalize to a vector-valued function f : R? — RP? Yes we can!

Theorem 21 (MV Delta Method R¢ — RP).

Suppose 7y, (1, — o) = Z for some weak limit Z and real numbers r,, — oo and f : RY — RP? is differentiable
at ¢p (meaning we replace the gradient with the Jacobian and dot product by matrix multiplication). It
holds that:

F(n) — F(who) — J¢(n — tho) = 0p(r;, ")

VT f
Where J; = . And:
VTfp

ralf (¥n) = f(o)l = JrZ

Example 10 (Estimating relative risk).
Suppose we observe n iid copies of X = (7,Y) where T and Y are binary and Py, (T = 1) = 1/2. Let:

_( Eel[YT]

Yo = By, [ (1 - 7))

The objective is to estimate f(to) where f(z) = Z.. Our estimator is as follows:
)

" n < Yi(1-T;)

By the CLT:
_ _ (Yo1(1—10,1) —0,1%0,2
Vit~ = ¥ (03= (V2 f T Tates )

By noting that Vf(v0) = (1/to0,2, —%0,1/¢52) = (1/%0,2, —f(¥0)/%0,2), gthe multivariate delta method
yields that:

4

Vnlf(¥n) = f(%0)] = (N(0,%), V(tho))

(0, f(%)TEVf(%))

N
N(o,f %l‘f'f(wo) [ ;f;ﬁ])
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4 Me-estimation, Z-estimation, and Maximum likelihood estima-
tion
M-estimation and Z-estimation are closely related estimation procedures for ¢g = ®(fy) (some functional
of the true DGP Py, where 6, € © is unrestricted) that involve maximizing and finding the root of an
population-based estimating equation, and replacing the population quantity by its empirical estimator.

We introduce empirical process notation for expectations, which can be read as a probability measure
applied to a function:

Pf= / f(@)dP(x)

We also introduce empirical process at f which is just the centered sums:

Guf =n" 'Y " (f(Xi) = Pf)
=1
4.1 M-estimation

Definition 13 (M-estimation framework).
For a collection of functions {my : ¢ € S}, m, identifies ¢y if:

¢o € argmax Ey[my(X)] is a singleton = argmax Py, m
¢ ¢

In the m-estimation framework, we replace the expectation over Py, (the true DGP) with the expectation
over the empirical distribution P,:

1 n
on € argglax - Z me(X;) = arg;nax P.mg
i=1

More generally, suppose {My : 6 € O} are a collection of real-valued functions satisfying:

¢o € argmax My(¢) of all € ©
¢

Then the M-estimator is given by

¢n € argmax M, (¢)
é

Where M,, is an estimator of My, .

Example 11 (MLE as M-estimator).

Suppose any two distribution functions P, @) are absolutely continuous with respect to the Lesbegue/counting

measure — then the pdfs/pmfs can be defined via the Radon-Nikodyn derivative: P := @e

==
Define the KL-divergence as: !

Dkr(PlQ) == —P [105’; (Z)]

The KL-divergence satisfies positivity and identification criteria:
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L. Dxr(Pl|Q) > 0.
2. Dgr(P||Q)=0iff P = Q.
Let:

0o € argmax [—Dxr.(Py, || Pp)]
IS

= argmax Py, [1og pe}
(USC) p@o

= argmax Py, [log pg]
0€© S——
me

= argmaxFPy,mg
<C)

Then:

0,, € argmax P, mg = argmax P, (log pg)
0O e)

1 n
= argmax— log po (X
gco M ZZ:; %)

= argmapre(Xi) = OniEe

o€ i3

4.2 Z-estimation

Z-estimation is closely related to M-estimation, but instead of choosing a ¢,, that maximizes an empirical
expectation, we choose one that finds the root of an empirical estimation equation.

Definition 14 (Z-estimation framework).
A second approach to estimating ¢ is to set it as the root of the equation:

Eol6(X)] = (0,...,0)7

Z-estimation estimates ¢y with a solution ¢,, to:
1 n
=~ 2(X:) =(0,...,0)7
i=1

In a more general setting, suppose {Zy : § € O} is a bunch of R’-valued functions satisfying for which ¢q
is a solution in ¢ to:

And letting Z,, denote an estimator of Zg,, the Z-estimator ¢,, is given as a solution in ¢ to:

Zn(¢) = (0,...,00T
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Example 12 (Sample median as a Z-estimator).
Let ¢o := median(X). We know

Eg[sign(X — ¢o)] =0

Implying that a the sample median ¢, will be a root of the following estimating equation with probability
1:

1 n
= Z sign(X; —¢) =0
" i=1

Theorem 22 (Z-estimation as M-estimation and vice versa).
Let

My : ¢ — —|[Zo()]|

implying that we can cast any Z-estimator as an M-estimator that obtains its maximum iff Zy(¢) = 0. Many
(but not all) M-estimators can be cast as Z-estimator. We require that derivatives exist:

Z9 : (b — VM@((b)

An example of an M-estimator that is NOT writable as a Z-estimator is Manski’s estimator of binary choice:
B = argmaxz (v; I(x]'B8 > 0))
B

Which does not have a natural Z-estimator.

4.3 Consistency of M and Z-estimators

There are several approaches to establishing the consistency of M and Z estimators including the uniform
consistency criterion on M, and the weak law of large numbers.
Suppose an M-estimator 6,, maximizes the random criterion function M, (#). Under suitable regularity

conditions, there exists an asymptotic criterion function such that M, (6) 2 M(0) V6 but this pointwise

. A~ D . .
convergence is too weak to ensure that 6,, — 63. We need a stronger version of functional convergence: one
such version is uniform convergence. See chapter 5 in VdV for more details.

Theorem 23 (Consistency of an M-estimator (VdV 5.8)).
In order for an M-estimator to be consistent, ¢,, = ¢, the following three criteria must hold:

(i) Near maximizer is available: M, (¢,) > sup M,,(¢) — op(1) (maximizes up to a small mistake)
¢

(ii) Identification: Ve > 0, Mo(¢o) >  sup  Mo(¢), i.e., ¢ is a well-separated maximum
¢:||d—ol[>e€

(iii) Uniform consistency: sup |M,,(¢) — My(¢)| % 0
¢
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Proof:

<0
< (Mo(do) — Mo(én)) — (Mn(¢0) — My (¢n)) +op(1)
= [Mo(¢0) — Mn(do)] + [Mn(dn)) — Mo(¢n)] +or(1)

SS‘-;PI(Mn*Mo)((ﬁ) SSL;PI(Mn*Mo)(¢)

<2-sup|(Mn — Mo)(¢)| + op(1)
= op(1) by part (iii), uniform consistency

Thus, we’ve shown that My(¢g) — Mo(dn) = op(l). Remains to show consistency. For a fixed € > 0, let

d = Mo(po) — sup My(¢p) > 0 by (i¢). Notice that {||¢n — do|| > €} C {Mo(po) — Mo(¢n) > &} because
[|[¢—dol|>€
the former event implies tha latter. Therefore:

Bo(llpn — ¢oll > €) < P(Mo(do) — Mo(¢n) > )
"% 0 b/c we showed My(po) 2 Mo(on)

= ¢n£>¢0

Theorem 24 (Cousistency of a Z-estimator (General, VdV 5.9)).
We obtain the consistency of general Z-estimators, largely for free, based on the previous proof. If we notice
that a zero of Z,,(¢) maximizes the function —||Z,,(¢)||.

Let Z,,(¢) be arandom values estimating equation and Zy(¢) be the population-based estimating equation
such that Ve >0

sngZn(qs) — Zo(9)|| &0

sl [1Zo(@)]] > 0= [1Zo(0)l

Then any sequence of estimators é,, such that Zn(g?)n) = op(1) yields bn B bo.

Proof: follows from the preceding theorem on applying the function M, (¢) = —||Z,(¢)|| and My(¢p) =
—Zn (@)l

We can derive the consistency of a 1-dimensional Z-estimator under slightly weaker conditions.

Theorem 25 (Consistency of a Z-estimator (1-dim, VAV Lemma 5.10)).
To show that ¢,, (the root of the empirical estimating equation Z,,(¢)) converges in probability to ¢ (the
root of the population estimating equation Zy(¢)), we rely on the following conditions:

1. Pointwise consistency: Vo, Z, (o) 2 Zy(¢) by WLLN (weaker than uniform consistency)

2. Either (a) each ¢ — Z, () is continuous and has exactly one root OR (b) ¢ — Z,,(6) is non-decreasing.
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3. Ve >0, Z()(d)o = 6) <0< Zo(¢0 + 6)

Note this theorem only applies to the 1-dimensional case.
Proof:

P[Z(¢o —€) <0, Zp(do + €) > 0]
< P(3 aroot of Z,, between ¢y — € and ¢ + €)
= P(¢n € (o — €, ¢0 +€))

(1) and (3) implies that:

Zn(do—€) B Zo(do—€) &  Zn(do+€) & Zo(do +€)
= P[Zy(¢o —€) <0, Zn(do+€) > 0] B P[Zo(¢ho — €) < 0,Zo(¢bo +€) >0 B> 1 (part (3))

Implying that P(¢, € (¢o — €, ¢o + €)) = 1 and showing that ¢,, 2 ¢o

Wald offers an alternative set of conditions that permit the consistency of M-estimators. It works best if
the parameter set is compact, and if not, we must show that estimators are eventually in a compact set of
lie in a suitable compactification. We also require that mg(z) is upper-semicontinuous for almost all z, i.e.,

lim sup mg, () < mg(x)
0,—0

Let:

M,(0) = Pymg  M(60) = Pmy

Theorem 26 (Wald’s consistency for M-estimators (VAV 5.14)).
Let mg(x) be upper-semicontinuous for almost all 2 and let the criterion over a locally maximum choice of
0 have finite measure — i.e., for every small ball U C ©:

P sup my < o0
ocU

Typically there exists a unique maximum, but we allow multiple maxima with ¢ describing this set. Then
for any estimators with 6, s.t. M, (0,,) > M, (6o) —o0,(1), then for every € > 0 and every compact set K C ©,
the joint probability:

P(||0n,00]| > € A 0, € K) =0

4.4 Proving uniform consistency

The real meat of proving consistency of M/Z-estimators is showing the uniform consistency condition
holds, i.e., sup |(P,, — Po)mg| = op(1). In other words, a set of functions {m : ¢ € S} that satisfies uniform
¢S

consistency is said to be Py-Glivenko-Cantalli. We can demonstrate the function space is Py-Glivenko-
Cantalli a variety of ways, using symmetrization and VC-bounds, Martingale theory, or via bracketing
entropy. We pursue the final strategy. See chapter 19 in VAV for more details.
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Definition 15 (P;-Glivenko-Cantalli and Bracketing Number).
A class of functions {mg : ¢ € S} is said to be Py)-Glivenko-Cantalli if it satisfies sup |(P, — Py)my| =

peS
OP<1).
Given two functions ¢, u in L'(Py) where L'(F) is the space of functions f : X — R satisfying:

[ / F(@)|dPo(z) < oo

A bracket [, u] contains the set of all functions f with £ < f < u. An L(Py) e-bracket is a bracket [¢, u] for
which ||U — €||L1(P0) S Eo

The bracketing number denoted Njj(e, F, LY(P)) of F is the minimum number of e-brackets needed
to cover F.

And turns out, finite bracketing numbers of sets of functions imply that the set is Py-Glivenko-Cantelli!

Theorem 27 (Py-G-C via bracketing).
If F is a class of functions for which Nj(e, F, L'(Fy)) < oo for every € > 0, F iS Py-G-C, i.e,

1P = Boll = sup|(Pn — Po) f| = op(1)
fer

Proof: the proof relies on the union bound result. For 4; € A for i € {1,2,...}, then:

H (U Ai) < ZN(Az‘)

The general proof idea involves (a) within each e-bracket, recognizing the f’s are nearly identical (b)
there exist finitely many e-brackets and (c¢) using the union bound result.

Fix € > 0. By condition 3 [{;,u,] for j € {1,2,..., N} where N is the bracketing number s.t. the
collection of brackets covers F. Define the following quantities:

Ane = {sup(P, — P)f > 2¢}
feF

By, :={sup(P, — P)f < —2¢}
fer

By symmetry it suffices to study A, . and show that it is vanishing, i.e., the LHS is converging in
probability to 0. Fix f € F, and by condition there exists one j s.t., £; < f < u; pointwise, implying:

P,f < Pyu; Pof > Pouy — Po(uj — ¢5)
(Pn = Po)f < Pnu]' = P()Uj + Po(U,j = éj)
= (Pn — Po)uj + Po(u; — ¢;)
< (P, —Py)uj+ Polu; —¥;| (by abs value)
—_————
=|luj—£;]L, (Py) <€

< (Pn — Po)'LLj + €
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Putting all the pieces together:

PO(An,e) = PO(Sup(Pn - P)f > 26)
feF

<P sup (P, — Po)u; + €+ 2¢
je{l,...,N}

N
g}j (P, — Po)u; > ¢)
o(1

) :’I'L—H)O

Thus, we’ve shown that the probability of sup (P, — P)f > 2¢ is asymptotically shrinking to 0, meaning

feF
sup|(Pn, — P)f| = op(1)
feF

This begs the question, how do we show that a given class of functions has a finite bracketing number.
To do so, we rely on Example 19.8 from Van der Vaart.

Theorem 28 (Finite bracketing number). Suppose
(i) F={fs:¢ € K} is a collection of functions where K C R? is compact.
(i) Vz,¢ — fs(x) is continuous.

(iii) There exists an envelope function F' s.t. both of the following as satisfied:

(a) sup|fs(x)| < F(z) for all x.
PeEK

(b) P0|F|:POF<OO

Then Ve > 0, the bracketing number is finite: Njj(e, L' (Fp), F) < co.

Proof: Let [f5, f?] be the bracket formed by the infimum and supremum of f for an open ball B about 6.

Construct a sequence of balls centered at ¢ called B,, with radii decreasing to 0. This implies fZm —
fB., "Z2%° 0 by the continuity of f.

Thus for any given € > 0 and for all ¢, we can find an open ball B about ¢ such that the bracket [fg, ]
is at most size e.

Sine K is compact, the open cover of collection of brackets (the union of the open balls) has a finite
subcover. The brackets in the finite subcover cover F, are finite in number, and have size at most e,

implying that the bracketing number for F is finite.

4.5 Asymptotic normality of M and Z-estimators

We like the consistency of M and Z-estimators, but the next question is how quickly the M and Z-
estimators converge to their targets. Turns out that for estimators based on N replications of an experiment,
that the order is often 7~ /2 and multiplication with the inverse rate creates a balance, allowing \/ﬁ(én —0)
to converge to an (often) normal distribution! This is a powerful tool for inference!

Example 13 (Heuristic for ASN of 1-d Z-estimator).
Suppose ¢, is the root of the equation Z,(¢) = P,z = 0, and ¢q is the root of Zy(¢) = Pzy, = 0. Let
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¢n £> ¢0-

0= Zo(¢o0) = —Zo(¢0)
= [Zn(¢0) — Zo(¢o)] — Zn(¢o)  (add subtract)
= [Zn(d0) — Zo(¢0)] + Zn(Pn) — Zn(o)  (bc Zn(pn) = 0)
= [Zn(¢0) — Zo(d0)] + Zo(én) — Zo(¢0) + Zn(Pn) — Zn(do) — Zo(én) + Zo(¢o)

Term 1 Term 2 Term 3

Let’s analyze the three terms separately!
Term 1 = (P, — Py)z4,
Term 2 = (¢ — ¢0)Zo(d0) + 5 (dn — ¢0)*Zo(dn)  (Since Zo(dn) = Op(1))

:(d’n*(ﬁo)"p(l)op(l)

= (¢pn — $0)Zo(¢0) + 0p(Pn — o)
Term 3 = (P, — Py) (26, — 2¢,)

DO =

Let’s pretend that ¢,, is deterministic. Now we invoke Chebychev’s inequality:

Pof{|(Pn — Po) (2, — 240)| > t//n} < nVaro|(F, - ;0)(%% — 2]

_ Varo(24, — 24,)
-T2

Suppose ¢, — ¢g, the variance of the RHS will typically go to 0. This holds for example when there exists
a function G with PyG? < oo such that for every ¢ in some neighborhood of ¢:

|26(x) = 20 ()| < |6 = ol |G(2)

If ¢, — @9, then Term 3 = op(n_l/ 2). To show this for a random sequence ¢,, is outside the scope of this
course (will be covered in 582-583).
Plugging in Terms from above, we obtain:

0= (P = Po)s0 + (90 = 90) (Zo(90) +0p(1)) +0p(n~"/2)
. (Pn _PO)Z¢0
Zo(¢0) +0p(1)

Amdll 1.1nder a finite second moment Pyz} < oo, then /n(P, — Po)zg0/ Zo(d0) = N(O,Pozﬁo/Zo(dao)Q),
implying:

= ¢n— Qo= +op(n~1/?)

Jw-w>:N@ %%>
" ‘ " Zo(o)?

Note that the preceding derivation requires that the criterion function z4(z) possesses two continuous
derivatives with respect to the parameter 6 for all z. This fails when the criterion function is zp(x) =
sign(z — ) for which the median is a root, yet the sample median is still ASN! This motivates the need for
additional conditions to achieve ASN.

The following two theorems describe the asymptotic normality of M and Z estimators. We omit their
proofs:
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Theorem 29 (ASN of General Z-estimators (VAV 5.21)).
Let ¢g = Pozg and ¢, = P, z4. Suppose the following conditions hold:

1. Interior: suppose ¢ is in a open subset of R% and that ze (the EE) is a map from X — R,
2. EE has finite second moment: Eo||zg,(X)||* < 0o

3. Smoothness and strong convexity: ¢ — Fyzy is differentiable at a zero ¢¢ with nonsingular Jacobian
(derivative matrix) Vi, (strongly convex).

4. Envelope function: there exists G : X — R s.t.

(i) Finite second moment: PyG? < oo
(ii) Lipschitz condition: Vz € X and every b, 6cU (¢0) (neighborhood of ¢y):

126(2) = 25()l| < ll6 — lIG(x)

5. Root-n consistency: {#,} is a sequence of estimators of ¢g s.t. P,zs, = 0,(n~/?) and ¢,, % .

Under these conditions, the Z-estimator ¢,, is ASN:
Vi(n = d0) = N (0,V; Plego 23] (V)T

Note: when z4(x) is continuously differentiable, a natural candidate for G in the above equation is

sup ||Zg]|-
€U¢0
Then the main condition reduces to partial derivatives are locally dominated by a square integrable

function, i.e., there should exists a square-integrable function G s.t. ||24(x)|| < G(z) for all ¢ close to ¢g. If
% is also continuous at ¢o, DCT allows us to move the derivative inside the expectation, yielding Vg, = P24,
Proof: Let G, f := v/n(P, — P) f denote the empirical process evaluated at f. Note that Jensen’s inequality,
the Lipschitz condition on z4, and and consistency of ¢, EN ¢o implies:

IGn2g, — Grzgoll < Gallzg, — 24|l
Jensen
< GuG(z)ll¢ - 4l
~—
4(ii)
= 0,(1)0,(1) = 0,(1)
— GnZ¢" — Gn2¢,0 £> 0
Note we can rewrite:

= Vn(Pnzs, —P%,,)
——
=0
= Vn P(24, —24,) + op(1)
~——

=0
Since Pz, is differentiable, we can apply the delta method to v/nP(z4, — 24, ) + op(1):
anqﬁn = Gn2¢0 ol Op(l)
= VnP(29, — 2p,) = Gnzg, +0p(1)
= V. (Voo (0 — ¢n) + 0p([|¢n — doll)) = Gnzg, +0p(1)  (Taylor expansion)
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Now we can write the following, knowing that nonsingularity of the variance matrix yields:

Valldn = doll < VAl Voo (6 = d0)l
C-S

= op(Vnllgn — ¢oll) + Op(1)
This shows that ¢,, = ¢g at rate at least n~/2. Thus, we have that op(y/72||¢n — ¢o||)op(1) and then”

ViV, (dn — ¢0) = —Grzg, + op(1)
= Vn(én — d0) = —[Vio] ' Gnzg, + 0p(1)
= —[Vio] "N (0, P2y, 5, )
= N (0, [Vo] ™" 1P 20 g4 [Vso) ~'17)

Turns out, the Lipschitz condition is even stronger than is necessary and does not work for the sample
median! We can still obtain convergence of the empirical processes under the weaker conditions where z,(z)
are a Donsker class and is continuous in probability. For example, the z4(x) = sign(x — ¢) (which generates
the median) do satisfy these criteria.

Theorem 30 (ASN of General M-estimators (VAV 5.23)).
Let ¢g = argmaxPymy and ¢, = argmaxP, mg. Suppose the following conditions hold:
¢ ¢

1. my, differentiable: suppose ¢ is in a open subset of R? and that my(z) (the max criterion) is differen-
tiable at ¢o for Py-almost everywhere z with derivative 7, .

2. Envelope function: V¢, ¢ € U (¢o) (neighborhood of ¢g), assume there exists a function G : X — R
satisfying:

(i) Finite second moment: PyG? < oo
(ii) Lipschitz condition: Vz € X and every ¢, ¢ € U(¢o) (neighborhood of ¢):

lIme(2) = mg(2)|| < |I¢ — 4l|G(x)

Note: we can identify this G by defining g (z) = Vgmeg(X) for a continuously differentiable h
neighborhood U around 0, pick G(x) = 0 € U||mmg(z)||2 because we’ve taken the largest magnitude
sup

derivative in the neighborhood. Second step is showing PpG(z)? < oo (pg 53 VdV).

3. Uniform convergence: assume there exists a non-singular symmetric matrix V5, s.t.

|P0m¢0+6h — P0m¢0 — %62hTV¢Oh| ﬂ; 0

lim sup 5

€=0||n||=1 €

Note: we will verify this condition using QMD for MLE. Note: we can replace this condition by the
supposition that Pymy is twice continuously differentiable at 0y, affording a two-term Taylor expansion:

1
Pomg = Pomg, + 5(6 = ¢0)" Vo (& = ¢o) + o(llé = doll*)
4. Near maximizer and consistent: P,mg, > supP,mg — op(n~!) and ¢, 2 ¢
¢

Under these conditions, the M-estimator is ASN:

Vi(bn — do) = N (0, V! Poring, i, V¢—01)
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4.6 Maximum Likelihood Estimation

Maximum likelihood estimators can be viewed as maximizers of the log-likelihood criterion function. For
mathematical convenience, we can subtract a constant pg, too:

My, : 0 — Eg, [bg Cg;e(X)} = Eg, [log(pe(X))] =

equivalent to maximizing: Ey, log [pe] = Pylog [p@}
p90 p90

1
My :0 - 1 Xi
0,0 — nZ og po(Xi)

equivalent to maximizing: P, log [}70}
Poo

—My, is the Kullback-Leibler divergence of pp and pg,. Thus, The MLE by definition minimizes the
(empirically estimated) KL divergence and by consistency, converges in probability to the 6 that minimizes
the true KL divergence. This corresponds to the true value 8y when the model is identifiable, i.e.:

P@#PGO Ve?’éeo

The MLE can also be viewed as a Z-estimator:

Zpy 0 — VoM, = VoEg, [log pe(X)]

In STAT513, we assumed that we could exchange integration and differentiation, yielding that the score
function has mean 0 and the asymptotic variance of the MLE. However, exchanging integration and differ-
entiation is a strong condition, which we can replace by QMD in the next subsection.

Example 14 (Properties of MLE under strong condition).
Suppose we can exchange integration and differentiation (a strong and non-necessary condition).
Claim 1: the score has function has mean 0, i.e., Zg,(0y) = 0.

Zoy(80) = Eo[ls,]
=/%mmmmm>

— [ 228, @)

Do, (J?)

— [ iy (@)duta)
Z/Vepeod.u(fﬁ)
= Ve/PeodM(l‘)

| —
=1l

=0

Claim 2: the MLE is asymptotically normal. Suppose 6 € R. Recall we showed for Z-estimators that under
some conditions:

Pozgo
(6, — 60) = N (o, 20(90)2>
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We know Pozgo = Poégo where éeo is the score. We know the following;:

0 Doy (©)po, () — Po, (x)*
950 = Do, ()7

Zo(0o) = Eqg [889550(56)}
. ]590( )p90( ) peo( )
_/ P, ()2 Ao (@)
/690 dP@o( )

(
/ Do, (w)dp(z) —

:w/% /% 24Py, ()
_,_/
= —Eg[lg, (2)?] = —PozZ,

Therefore the asymptotic variance of the MLE is [Pyzg | ™! = [Poleld ]t = I,*
Claim 3: MLE is ASN multivariate. Let § € R?. By similar arguments, we note that the FIM is defined
as:

Iy = Eg[lg(X)lo(X)7]
V(0 — 80) = N(0,1, ' Pollolg 11, 1) = N (0, I,.")

Note: these derivations implicitly require that the density py has at least two derivatives with respect
to the parameter. This is not the case with uniform distributions for example!

4.7 Quadratic Mean Differentiablility (QMD)

Note that we can show the score has mean 0 without requiring the exchange of integration and differ-
entiation! Also note that the asymptotic variance of the MLE depends on the score but not its derivative,
motivating the need for QMD.

QMD is also critical for allowing the asymptotic expansion of the local log-likelihood ratio, which allows
us to conclude that likelihood ratio processes tend to a Gaussian process after reparametrization.

Definition 16 (QMD). _
The root density /pg is called QMD (or differentiable in quadratic mean) at 6 if there exists a function /g
S.t.:

2
. / [\/Pem — Vpo(a) — ShTlo(a) pe(x)] dp(x) =30

RER:||h||=1

Or equivalently, for any A (VAV pg 93)

2
/ [MM - Voa@) - 5o /T da) = o) s b0

||h||2 / l:\/p9+6h \/pg(x) - ;hTEQ\/ZTQ] H(dx) £> 0
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A model {Py : 0 € ©} is called QMD at 6 if the root density is QMD at 6. A model is called QMD if the
root density is QMD at all § € ©.

Here is a theorem that we can use to verify QMD-ness.

Theorem 31 (Thm 7.6 VdV).
Suppose that y/pg(x) is continuously differentiable for every x. If the elements of the matrix:

_ [pe@pe(@)”
Ie_/ po()? 45 z)

are well-defined and continuous in 6, then ,/pg is QMD and ¢y is given by %Z'

See Theorem 15 for a result showing QMD-ness for exponential families (Vdv Ex. 7.7)!
One theorem will help us link the results of applying M-estimation ASN to known properties of the MLE

Theorem 32 (Thm 7.2 VdV).
Suppose the following;:

e O is an open subset of R?
o {Py:0c 0} is QMD at 6.
Then Pply = 0 and the FIM Ip = Pylgl} exists.

With QMD in hand, we can establish the asymptotic normality and expected properties of maximum
likelihood estimators rigorously: without requiring exchange of integration and differentiation and without
assuming that second derivatives exist.
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Theorem 33 (Properties of MLE under QMD (VdV Theorem 5.39)). Suppose the model {Py : 6 € O} is
QMD at an inner point 6y € © C R*. Also suppose there exists a measurable function G (natural choice
would be /) with PyG? < oo s.t. for every 1,6, in a neighborhood of fg:

|log p, () — log pe, (z)| < G(2)||61 — 02|

If the Fisher information matrix Iy, is nonsingular and én is consistent, then:

n

Vil = 00] = I == 3" oy (X) +or (1)
=1

= I;,'/1( Py — Po)lo, + 0p(1)
= 1o, N(0,El(do, — Eléa,])*])

= Ie_olN(O,Var(égo))
= N(0, 19_01) (b/c FIM is variance of score)

Proof: This is a corollary of Theorem 5.23 (M-estimator ASN). We will show that condition (iii) (uniform
convergence) holds, i.e., we WTS:

1
sup |Poloy+en — Polo, + §€2hT‘/0h =o(?) ase—0
[|R||=1

Let pe := pgy+en and let pg := py,. Note that Poly,+en — FPols, can be written as:

Pyllog pe —log po] = Py[2log \/pe — 21og \/Po

= 2P, |log , = log(1)
Po ~~—~—~—

=0
= 2/f(w5) — f(0)Py(dx) (Letting We := i—e —1 and f(x) = log(1 + w))
0
We did the following be f has a nice Taylor expansion:
fw) - 70) = 3 LWy g
w = D w—a
— li —_0)! — l 1 _n\2 2
= U= 1!1+w‘w:0( 0) 2! (1 4+ w)? wzo(w 0) + wr(w)
2
=w— % + w?r(w)
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With r(w) — 0 as w — 0.

Rl — o] = 2 (/ wePo(dx)> 9 (/ ung(d@) +2 (/ wfr(we)Po(da:))
o 1 = 2/ (\/g;— 1) s (@)

:z/m—\/z%wm(d@
_ s / (po — v/Bepo) p(dz)

:_2/p€+p0;2\/mu(dx) (b/c/pGZ/pozl)

1
— 25 [ (VF - V) uldo)
= —H?(P., P,) the Hellinger Distance

Term 2 :/w?Po(dx)

(5 e
= / <§; Y1 2\/?;) pop(dz)

= / (Pe + Po — 2+/Pepo) p(dx)

— [ WF - vPulz)
= H2(P€?PO)

Tom 3 =2 [ (VB = VR r(Wou(de)
= o(€?) tricky to show
Thus,
Pollog pe — log po] = —2H?(P., Py)
Now it remains to show that —2H?(P., Py) and 3e*hT Vyh and o(e?) close. To do this, we use the following:
e Reverse triangle inequality: |||a|| — [|0]]| < [|a — b]].

e Let’s introduce the L?(y) metric space which is a collection of functions f s.t. {f : ||f||r, < oo}
. . 1/2
equipped with norm || f||1, () = [[ f?(z)p(dz)] /2,
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Thus we obtain:

A

1 . 1 . ..
1vPe = v/Boll ooy = lI5ehT oo v/Poll | < 1V = v/Bo = 5ehT oy /Pollaguy (by rev-tri inequal)

QMD

= o(€?)
2 1 2 T ) 2 2
= H(Pe, Fo) = |lvPe = vPollLouy = 77117 Loo v/Pol [, () + 0(€7)
1 .
= —2H?*(P.,Py) = —§€2||hT€eo\/170||2L2(H> +o(e?)
1 ..
= —§e2hT [/f@oggopou(dx)] h
1 ..
= ithTPo[Zgoﬁgo]h
Implying
Py| — = Pyl — 1 —Lepryy 2
0[My+en — Mg,| = Pollog pe —logpo] = 26 Voh 4+ o(€”)

Where Vo = Pyl (3, ).

4.8 Local Asymptotic Normality (Ch 7 VdV)

A sequence of statistical models is LAN if their likelihood ratio processes are similar to those of a normal
location parameter (asymptotically). This holds if the likelihood ratio processes admit a quadratic expansion.
An important example involves sampling from a smooth parametric model. The power of LAN implies
convergence of the models to a Normal model after rescaling the parameter; i.e., statistical experiments can
be approximated by Gaussian experiments after suitable reparameterization.

First we introduce some background.

e Suppose we observe a sample Xi,..., X, from a distribution Py on a measurable space indexed by
6 € © C R* an open subset. The distribution of the sample is equivalent to sampling over {P} =
H’?:l Py:0¢€ @}

e Statistical experiment: procedure that can be infinitely repeated, has well-defined set of possible
outcomes, produces only one outcome at conclusion of each trial.

e Local parameter: h := \/n(6 —6)) for a fixed, known parameter f,. We can rewrite Py’ = Pg;+h/\/ﬁv
meaning that the experiment is with respect to unknown parameter h.

Remarkably, we can show that for large n, the following experiments are similar in statistical properties
whenever the original experiments Py are smooth in the parameter:

(P vnyym - h €RF) = (N(h, I;)!) - h € RF)

meaning a single observation from a normal distribution with mean h and covariance matrix equal to inverse
FIM.

Theorem 34 (Expanding the likelihood ratio (VAV 7.2)).
To show that the likelihood ratio process approximates a Gaussian process (in a local neighborhood of ),
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we must first expand the likelihood. Suppose for simplicity that ¢g(z) is twice differentiable wrt ¢ for all x
with derivatives £p(z) and fg(z). A Taylor series expansion of pgi, at 6 yields the log likelihood ratio is:

Po+h

log = log pg+n — logpg

. 1 .-
=logpy + hlg(x) + 5h%(gc) + 0.(h?) — log pg
. 1 ..
= hly(z) + 5h%(gc) + 04 (h?)

It follows that:

longeo — I3 Hp0+h/f( X;)

i1 Do

n

h e .
= % ; Lo(X;) + Z 6.9 ) + Remainder,,
= hv/n < Z lo(X ) +-— Z l9(X;) + Remainder,

. . R2
= h/n(P,ly — Pyly) +— P, /9 +Remainder,, (Score has mean 0)
2 \,-/
G,Lég H*Ie

h2
asymptotically = hN(0, Iy) — ?Ig +op,(1)

In the next step, we will see that this is similar to the likelihood ratio process for a normal experiment! Note
that we refer to this as ”local” ASN because the expansion was in the neighborhood of 6.

Note: the preceding derivation can be made rigorous under continuity conditions on the log likelihood
OR under the weaker condition that the model is QMD.

Formally: Suppose © C R* is an open subset and the model {Py : ¢ € O} is differentiable in
quadratic mean at 6. As stated earlier, Pyly = 0 and the FIM Iy = Pgégﬁg exists. Then for every converging
sequence h,, — h, as n — oo:

p 1
log H 9+;9/‘F Z hT@ M= ihTfoh +op, (1)
i=1

The asymptotic expansion of the local log likelihood hinges on the model being QMD. We can establish
QMD-ness via showing pg(x) is differentiable and is dominated by an integrable function. Alternatively we
can use Lemma 7.6 VAV to establish QMD-ness. Or even better, we can establish QMD-ness for useful
classes of models!

Example 15 (QMD-ness and Local Asymptotic Expansion of Exponential Families (VAV Ex. 7.7)).
Suppose we have an exponential family of the form:

po(x) = d(0)h(z) exp(Q(G)Tt(x))

If Q(6) is continuously differentiable and map the parameter set © into the interior of the natural parameter
space, then the three conditions of VAV Lemma 7.6 are satisfied, making the exponential family model QMD.
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Additionally, the score function and information matrix are:
lo(z) = Qp(t(z) — Eo(t(X)))  Ip = Qpeove(t(X))(Qh)"

Thus, the asymptotic expansion of the local log likelihood is valid for most exponential family members.

Example 16 (QMD-ness and local asymptotic expansion of location models (VAV Ex. 7.8)).
Consider all location models {f(z — 0) : § € R} for a positive, continuously differentiable density f with

finite Fisher information:
i= [ (L) @sea

The score function f(z) can be equal to — <§) (x — 6), and the Fisher information is equal to Iy for all 6
and hence is continuous in 6. Then the location family is QMD and the asymptotic expansion of the local
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5 Hypothesis Testing
The intuition: suppose we observe some iid data from a distribution Py belonging to {Py : 8’ € © C R?}.
The objective is to test:
Hy: 0 € O against Hy : 0 ¢ O

Let ¢, be a test function, which outputs values on [0,1]. Deterministic tests take on values 0 or 1,
while randomized functions can output a probability that we reject Hy.
The power function denotes the probability of rejecting Hy based on the test ¢,:

mn(0) = Eglon (X1, ..., X))
The Neyman-Pearson testing paradigm encourages us to choose a ¢,, such that

e Type 1 error rate control: sup m,(6p) < «
00€O0

e Achieve high power at alternatives: make 7, () large for 6 ¢ ©

How do we motivate these tests asymptotically? By defining an asymptotically a-level test.

Definition 17 (Asymptotically a-level tests).
A sequence of tests {¢,}>2 is a asymptotically level-a tests if:

lim sup 7, (0p) < o for all 6 € O

5.1 Testing framework, Wald, Likelihood Ratio, and Score tests

Definition 18 (Testing framework and three famous parametric tests).
In our testing paradigm, we can split the data generating parameter 6 := (¢,n) where ¢ is the POI and 7

is a nuisance. So § € R? ¢ € R™ and 1 € R4™™.
Then © := T x N where T C R™ and N € R* ™ where x is the tensor product. We consider 6 on the

interior of ©.
WLOG we can define the null parameter set Oy := {6 = (¢,n) : » = 0}.
o If m=d, ie., ©y= {0 =1 =0} which is denoted as a simple null hypothesis.

e If m < d, then the nuisance can take on values and ©y may have multiple elements, creating a composite
null hypothesis.

The following are three classic statistical tests:

1. Wald Test: motivated by the fact that we should reject Ho when an estimate 1 is far from 0. We
know that for 0 = (¢, 7):

n'/2[0 — 6] = N(0, ;"
= n'2[p — ] = N(0,4;") by Woodbury Ag = Ip 11 — Ip1215 3,15 15
. nl/zAé/Q[i/S — ] = N(0,Id,,)
Shusky n1/2A;/2[1[, — ] = N(0,Id,,)
— [ — T A5l — ¥]” = x2(m)
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Which when 1 = 0, suggests rejecting Hy when W, = n[@]TAé [’(/AJ]T is larger than the (1 — a) quantile

of x%(m). Hence, we expect W, % 0 so0 the test will attain asymptotic power of 1.

2. Likelihood ratio test: heuristically, the LRT compares D1, (Py, Py,) and will reject if the following
is too large:

inf DKL(P@, Pgo) Pg [ﬁg — &90}

[ZISSH)
log pg
= Py(dx
/10gp90 bo(dz)

We allow 6y € ©g nonempty with potentially multiple elements. In practice, we don’t know 6 so we
us a consistent estimator, so we replace Py by its empirical plugin estimator P, and replace 6 by an
unrestricted MLE 6. We give the likelihood ratio test statistic:

Ly :=2nP,[ls] — sup P,[ly,]
00€Op

—_——
Restricted MLE
— Pl — 4]

= -2 Z (2nd order Taylor expansion next)

(80 — 6)TE5(Xi) (B0 — )]

N[ —

= -2 Z[fé(Xi) — 05(X3) + (Bo — 0)TE5(X:) +
2(60 — 0 TZ% — (60— 0) Ze )(6o — 6)

—(6p— )T Zﬁo Y(0o—6)  (b/c score has mean 0)
—vn(fo — 6)” [Pnfé]\/ﬁ(éo —0)

Under Hy, 6 AND 6y 5 0 and Pnfé 2 Pyly = —I,. This implies:

Lo 2 [aly(fo — 6)711;  [Vnlo (8o — 0)7] + op(1)

We also know that:

V(b - 0) = I, (\/E(Pn . pg)ée) +o,(1)
=Gnly
— (0 —0) = I, (P — Py)lg + 0p(n~Y/?)

0 0
o = 77) N <Ie,212(Pn — Pl + Op(nl/z))

And éoeHo(

Where 55972 =V, logpg and Iy 2o = P9é9,2é£2
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Combining these results we obtain:

\/ﬁ[g(éo— ) IIQ((OO —v)= )+0P(1)

= \FIE' P, Pg <(I_1 i ) = Igé@) +0p(1>
0,22%0,2
Ipi1 Ipa2 0 > <ée 1)>
= P, — Py) . — ([ 1
=V o ((Ie o1 I 22) < Iy 22002 oo +op(1)
= /n(P, — Py) (( (o = 1o 12[9 22l 2]>> +op(1)
COMT and Shutsky (N(O,Ag )
0
Thus, under H
Ipa1 — Tg 1ol sl 01)~t ..\ (VT
— Wil — 07115 [Vita(ho — 0)7] + op(t) = (v7 0) ({0~ Toazloeloat) ™ o) (V)
=VTA;'V = x*(m)
Thus, we should reject Hy when L,, is larger than the 1 — o quantile of the x?(m) dist.

3. Score test: Heuristically, scores have mean 0: Pyly = 0. Under when WLOG =0, Hy: P@lf(om) =

Thus, the score tests rejects when the estimate of the latter expectation is far from 0. Let é() be the
restricted MLE over ©g and define Z,, is our estimate of the latter:

Zn(6p) i= — zn:fgo (X3) Lo+ op(1)

Zn(00) 22 0+ 0p(1)

So we showed our estimator should be unbiased and consistent for 0 under the null, but now we want
it’s limiting distribution under the null. Note we can break our estimator up into terms and show it
has asymptotic distribution under very similar arguments as for LRT:

Zn(Bo) = n*/?(Py — Po)lg +n'/? (Peééo - Peée) +n'2(P, — Py)(8y, — £)
————

Hy (N(()(,)Ag))

Therefore, the estimator:

CLT Delta method Donsker op (1)

Sn = [Zn00)]" Iy, 117, 00)=x2(m)

In practice: the tests are all asymptotically equivalent under the null! The score test has the advantage
of not requiring calculation of the unrestricted MLE. The Wald test has the advantage of not having to
calculate the restricted MLE. The likelihood ratio test requires calculating both, but has nice theoretical
guarantees in some cases (most powerful test under two point hypothesis). In small samples, the LRT and
score test offer better T1 error rate control than the Wald test.
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5.2 Contiguity

Contiguity generalizes the concept of absolute continuity to sequences of measures in asymptopia. In
other words, contiguity is ”asymptotic absolute continuity”.

Note that we care about absolute continuity because it allows us to change the integration measure
simply by reweighting the integration by the likelihood ratio! This allows us to take what we’ve learned
about distributions of test statistics under the null and define their distributions under the alternative (a

new measure)!
For instance:
d
[raa= [ s5har
/fdQ:/fZ%dP — Q<<P

Definition 19 (Absolute continuity, orthogonal measures, Lebesgue decomposition).
Let P and @ be measures on a measurable space (2,.4), then @Q is absolutely continuous wrt P if P(A) =
0 = Q(A)=0.
Furthermore, P and @ are orthogonal if 2 can be partitioned as Q@ = Qp U Qg with Qp N Qg = 0 and
P(Qg) = Q(Qp) = 0. An example of orthogonal measures on R is the counting and Lebesgue measures.
Lebesgue decomposition: for any two probability distribution P and @, there exist unique measures
Q% (A) := QAN Qp) (where Qp := {p > 0} i.e., where density of P has positive support) and Q-+ :=
Q(AN Q%) (where Q% := {p = 0} i.e., where density of P has no support), such that Q = Q* + Q+ and
Q% << P and Q+ L P. Essentially, any measure @) can be decomposed into absolutely continuous and
orthogonal components wrt P.

Theorem 35 (Lemma 6.2 VdV).
Let P and @ be probability measures with densities p and ¢ with respect to p. Let

QUA)=QAN{p>0}) Q(A)=QAN{p=0})
For these measures
(i) Lebesgue decomposition: Q = Q* +Q+, Q* << P, Q+ L P
(i) Q*(A) = [, 1dP for every measurable A and likelihood ratio 1.
(iii) Q << P < f%szl = Q=Q%and QL+ =0
Proof: in VAV page 86

Contiguity is simply absolute continuity for sequences of measures.

Definition 20 (Contiguity).
A sequence {@,}22; is contiguous with respect to {P,}>2, if P,(A,) — 0 implies Q,(A,) — 0 for every
sequence of measurable sets {A,}>2 ;. It is denoted by @, < P,,. Mutual contiguity is denoted @, < >PF,
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5.3 Le Cam’s Lemmas

Le Cam’s First Lemma generalizes part (iii) of Theorem 35 to asymptotic sequences of measures. 1|
provide a heuristic understanding.
The likelihood ratios are nonnegative and satisfy:

dQn P,
< <
Ep, |:dPn:| <1and Eg, |:dQn:| <1

This means that the likelihood ratios fluQ%" and Z’QL’: are uniformly tight under P, and @, respectively, i.e.,

% = Op, (1) and flﬂQDﬁ = O, (1). By Prokhorov’s theorem, this implies that each sequence of measures
has a weakly convergent subsequence. Le Cam’s Lemma states that contiguity is determined by the limit
points of this sequence. In other words, we recast part (iii) of Theorem 35:

Q<< P = /EPZ—gzl — Q(%—O)—O

By replacing the measures with measure sequences and their likelihood ratios with the limit points of their

likelihood ratios. For % %L U for a subsequence of (),, and fli%" 2V fora subseqeunce of P,:

Qn<P, < FEp[V]=1 < Q,(U=0)=0

Theorem 36 (Le Cam’s First Lemma (VAV 6.4)).
Suppose P, and @,, are sequences of measures on a measurable space (£2,,,.A,). Then TFAE:

(i) Contiguity: @, <1 P,

(ii) Weak limit points of gg" give mass 0 to 0 under @Q,,: if jg" Lo along a subsequence of @, then
PU >0)=1.
(iii) Weak limit points of ‘;%” have mean 1 under P,,: if ‘fi%" = V along a subsequence of Q,,, then E[V] = 1.

(iv) For any statistics T}, : Q, — R, If T, 25 0 then T}, <8 0
Proof: in VdV pg 88.

The following special case plays an important role in the asymptotic theory of smooth parametric models.

Theorem 37 (Le Cam’s First Lemma — Smooth Parametric Models (VAV Ex. 6.5)).
Let P, and Q,, be probability measures on arbitrary measure spaces such that the likelihood ratio converges
weakly to a lognormal and the log likelihood ratio converges weakly to a normal:

If this condition holds, @, < P,. And Q,, <>P, iff u = -

2

Proof: To show Q,, <1 Py, let U = exp(N(u,0?)) by definition as in Theorem 36 part (ii). Note that U > 0
because the exponential guarantees that U is always positive. Thus @, (U > 0) = 1 and by Le Cam’s First
Lemma, @, < P,.
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switching the roles of @, and P,. Let V := exp(N(u,0?)) as defined in part (iii), which is true because
jgz L oxp(N(u,02)). Hence, V is obtained for any subsequence of @,. Then E[V] = E(exp(N(u,02)))
equals 1 iff y = —%- (since mean of a lognormal RV is exp(u + 02/2).

To show @, < >P,, we take the path of Theorem 36 part (iii) to show contiguity the other direction,

distribution).

Now we're ready for the big one: Le Cam’s third Lemma, which allows us to obtain the limiting distri-
bution of a sequence of random vectors under laws @,, (an alternative distribution) based on laws P, (a null

Theorem 38 (Le Cam’s Third Lemma (VdV 6.6)).

Let P, and @, be sequences of probability measures on (€2,,,.4,) (set and sigma alg., often borel alg.) and
let T}, : Q,, — RF be a sequence of random vectors (your test statistics). Suppose that @Q,, <1 P, and

dQn P,
Wiy === X
(w52 ) & X1
Define a new probability measure s.t. VA € R, R(A) = E(1v)[I(T € A)V]. Then:

T, %R
Proof: VdV pg. 90

Many people use the User-friendly version of Le Cam’s third lemmal

Theorem 39 (User Friendly Le Cam’s Third Lemma (Ex 6.7 VdV)).
If the following is true:

dQn Py 12 b T
<Tna10g dPn> = Niy1 ((_022) : <7_T 02>>
Then:

T, % Ny(p+71,%)

Proof: VAV pg. 90-91. Uses characteristics functions!

How do we find 7, the shift under the local alternative?
Note that local asymptotic normality gives us the fact that:

dPn
0+h/\/n P, 1 T T
log ———— N | —=h"Iph,h" Iph
og dPH" :g ( 2 01ty 0 >
If we can write the estimator as:

VAT, =) = == 3~ 0(X) +or, (1) 5 N (0. Py vy v
=1

If we know the asymptotic variance, we can work backwards to the influence function.
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Once we have the influence function, we can work back to the 7 via the following fact:

Py T T
B Loin/ym \ Py 0 Pyborhg  Pybah' g
<\/’E(Tn 9),10g dPen ) =N ((—éhTIQh) ’ <P9¢ghT€9 hngh

One fruitful example is the distribution of the MLE:

Example 17 (MLE under local alternative).
Under a QMD model at inner point 6, with Lipschitz condition on the density, with nonsingular fisher
infromation, we showed that in Theorem 33 the following is true for the MLE:

V(0 — 6) \/—Z I, e(X;) +op, (1)

Infl. func MLE
If the model is QMD, we obtain a second order Taylor expansion of the log-likelihood enabling us to describe
the distribution of the log likelihood via LAN:
logL, = =N zn: hTlp(X;) — lhTIgh +op, (1)
n \/ﬁ ; 7 2 n
1
=N <—§thgh, hTLgh>
And thus, the log likelihood ratio and MLE converge to a bivariate normal distribution:
V(6 — 0) (1 ls(X 0
n(6, — _ )
() G (o

L’Yh
%hTIQh h o hTIph
Implying that /n(6, — 0) 2 N(h,I;").

Thus, the asymptotic distribution of the MLE is invariant to local pertubations of !
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