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1 Sufficiency and Minimal Sufficiency

1.1 Sufficiency

Model-based inference depends on a sample space (collection of possible outcomes) and a model space
/ distribution family: (X ,P). θ denotes all the unknown parameters in the model space, and fixing θ
produces a particular distribution.

In Fisher’s framework, we aim to infer the unknown parameter, θ, using the data, X and the sample
space and distn family: (X ,P). Fisher’s goal was to reduce the data X into a simple statistic, T (X) such
that no information related to inferring θ would be lost. This idea formally relied on the idea of a sufficient
statistic.

Definition 1 (Two definitions of Sufficiency). A statistic, T (X), is sufficient if no information related to
inferring θ is lost when converting from X to T (X). Formally:

(i) Def 1: a statistic, T (X) is sufficient if given T (X), we can generate new data X∗, based only on

knowing T (X), such that X∗ D
= X.

(ii) Def 2: T (X) is a sufficient statistic if X|T (X) does not depend on θ.

Verifying these two definitions can be somewhat cumbersome. Thankfully, there is an extremely useful
theorem that helps us prove sufficiency: the factorization theorem.

Theorem 1 (Fisher-Neyman Factorization Theorem). A statistic, T (X) is a sufficient statistic for (X ,P)
(or θ) if and only if the pdf/pmf fθ(x) factors:

fθ(X) = gθ(T (X)) · h(X)

where gθ(T (X)) depends on X only through T (X) and h(X) does not depend on θ.

Property 1 (1-1 maps of SS, Remark 11.2 Perlman). If T (X) is a sufficient statistic for θ and f is a 1-1 map,
f(T (X)) is also a sufficient statistic for θ. This is because T (X) and f(T (X)) yield the same partitioning
on the sample space X .

Note that by this property, we conclude that sufficient statistics are not unique.

Definition 2 (Sufficiency of Order Statistics, Ex. 11.6 Perlman). Let X1, . . . , Xn
iid∼ f ∈ P where P is the

class of permutation-invariant pdfs, meaning sequence ordering of random variables is irrelevant. In other
words, if you shuffle the order of input variables you won’t change the resulting distribution:

f(X1, . . . , Xn) = f(Xπ1
, . . . , Xπn

)

for all permutations π. If P is the class of sequence-invariant pdfs, then the order statistics, (X(1), . . . , X(n))
is a sufficient statistic for P.

2



Ethan Ashby STAT513 Important Results Winter 2022

Theorem 2 (SS for subfamilies - Lemma 11.1 Perlman). If T (X) is a sufficient statistic with respect to P
and if P1 ⊂ P (i.e., is a subfamily of P), then T (X) is a sufficient statistic with respect to P1.

Theorem 3 (SS for 2-step data reduction - Lemma 11.2 Perlman). If T (X) is a sufficient statistic for (X,P)
and S(T (X)) is a sufficient statistic for (T,Q), S(T (X)) is also a sufficient statistic for (X,P).

Sufficient statistics also have nice interpretations vis-a-vis likelihood ratios:

Property 2 (Sufficient stats and Likelihood ratios). Suppose P = {fθ(x)|θ ∈ Ω} is a general statistical
model, and we would like to choose between θ = θ1, θ2. We could use the Likelihood ratio (LR) to base our
decision:

Lθ1,θ2(x) =
fθ2(x)

fθ1(x)

=
gθ2(T (X))

gθ1(T (X))
(By factorization thm)

Implying that the likelihood ratio depends on X only through the value of the sufficient statistic T (X).

1.2 Minimal sufficiency

There are many sufficient statistics for θ, but which one is minimal, i.e., every other SS can be reduced
to it?

Definition 3 (Minimal sufficiency). T ∗(X) is a minimal sufficient statistic for P if for any sufficient
statistic T (X), there exists a function h(·), such that T ∗(X) = h(T (X)), i.e., T ∗(X) is a reduction of T (X).

Note that the minimal sufficient statistic may not be unique. There can be many minimal sufficient
statistics.

Is the MSS guaranteed to exist? Yes, according to Fisher’s likelihood principle.

Definition 4 (Fisher’s Likelihood Principle). Fisher’s Likelihood Principle guarantees the existence of a
minimal sufficient statistic. Fihser’s likelihood principle says that

T ∗∗(·) = {Lθ1,θ2(·) :=
pθ2(x)

pθ1(x)
; θ1, θ2 ∈ Θ}

In other words, the set of all pairwise likelihood ratios is a minimal sufficient statistic for P.

Pf sketch:
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1. First we show T ∗∗(X) is a SS. Note Lθ1,θ2 is a function of θ1, θ2. Set θ1 to be fixed and let θ = θ2 vary
over Θ.

fθ(x) = Lθ1,θ2(x)︸ ︷︷ ︸
=

fθ(x)

fθ1
(x)

·fθ1(x)

= gθ(T (X)) · h(x) =⇒ T (X) is SS

2. Next, we show for all SS T (X), T ∗∗(X) = h(T (X)).

Lθ1,θ2 =
fθ2(x)

fθ1(x)

=
gθ2(T (X))

gθ1(T (X))
=
gθ2
gθ1

(T (X))

How do we find the MSS? We use the Lehmann-Scheffe theorem.

Theorem 4 (Lehmann-Scheffé theorem). Suppose X ∼ {fθ(x), θ ∈ Ω} T (X) is a minimal sufficient statistic
if

T (X) = T (Y ) ⇐⇒ fθ(y)

fθ(x)
is θ-free

This usually requires an iff proof!
Note: the L-S Theorem is a sufficient criterion for MSS, but is not a necessary criterion! In other wrods,

showing that Lehmann-Scheffe holds proves a statistic is minimal sufficient, but showing a statistic does not
satisfy Lehmann-Scheffe does not mean it is not minimal.

Pf sketch Suppose T (X) = T (Y ) ⇐⇒ fθ(y)
fθ(x)

is θ-free

T (X) = T (Y ) ⇐⇒ fθ(y)

fθ(x)
is θ-free

⇐⇒ ∀θ1, θ2 ∈ Ω,
fθ1(y)

fθ1(x)
=
fθ2(y)

fθ2(x)

⇐⇒ ∀θ1, θ2 ∈ Ω,
fθ2(x)

fθ1(x)
=
fθ2(y)

fθ1(y)

⇐⇒ Lθ1,θ2(x) = Lθ1,θ2(y) ∀θ1, θ2 ∈ Ω

⇐⇒ T ∗∗(X) = T ∗∗(Y )

This implies T (X) = T (Y ) ⇐⇒ T ∗∗(X) = T ∗∗(Y ), so T must be MSS.

Here’s a worked example of the Lehmann-Scheffe theorem: suppose X1, . . . , Xn
iid∼ N(µ, 1). Show X̄n is
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minimal sufficient. We start by writing the joint pdf:

fθ(x) =

n∏
i=1

[
1√
2π
e−

(xi−θ)2

2

]
=

1

(2π)n/2
e−

∑
(xi−θ)2

2

=
1

(2π)n/2
e−

∑
(xi−x̄n+x̄n−θ)2

2

=
1

(2π)n/2
e−

∑
(x̄n−xi)

2

2︸ ︷︷ ︸
h(x)

e−
n(x̄n−θ)2

2︸ ︷︷ ︸
gθ(T (X))

=⇒ T (X) = X̄n is SS

Now Lehmann-Scheffe to show MSS:

fθ(y)

fθ(x)
=
e−

∑
(yi−µ)2

2

e−
∑

(xi−µ)2

2

= e
−

∑
(xi−µ)2+

∑
(yi−µ)2

2

= e
∑

y2
i −x2

i
2 · eµ(

∑
xi−

∑
yi)

If
∑
Xi =

∑
Yi is true, it’s trivial to see that fθ(y)

fθ(x)
is µ-free. If fθ(y)

fθ(x)
is µ-free: then

µ(
∑

xi −
∑

yi) = C where C is const wrt θ

=⇒ d

dµ
µ(
∑

xi −
∑

yi) =
d

dµ
C

=⇒
∑

xi =
∑

yi =⇒ T (X) = T (Y )

Strategy 1 (Finding the MSS).

1. Write the joint likelihood

2. Find the SS using factorization theorem

3. Use the L-S theorem to show minimal sufficiency:

Property 3 (1-D Exponential Family). Suppose you have, X1, . . . , Xn
iid∼ fθ where θ ∈ R1 of exponential

form:

fθ(x) = a(θ) exp[θT (xi)] · h(x)

with joint pdf:

fθ(x) = [a(θ)]n exp

[
θ

n∑
i=1

T (xi)

]
n∏

i=1

h(xi)
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Then,
∑n

i=1 T (Xi) is a minimal sufficient statistic. Thus,

Dist: N1(µ, 1) θ = µ MSS:

n∑
i=1

Xi

Dist: N1(0, σ
2) θ = − 1

2σ2
MSS:

n∑
i=1

X2
i

Dist: Binomial(n, p) θ = log

(
p

1− p

)
MSS:

n∑
i=1

Xi

Dist: Poisson(λ) θ = log(λ) MSS:

n∑
i=1

Xi

Dist: Exponential(λ) θ = −λ MSS:

n∑
i=1

Xi

Property 4 (Example 11.13 Perlman - k-dimensional MSS). Suppose you have, X1, . . . , Xn
iid∼ fθ where

θ ∈ Rk of exponential form:

fθ(x) = a(θ1, . . . , θk) exp[θ1T1(x) + . . .+ θkTk(x)] · h(x)

with joint pdf:

fθ(x) = [a(θ)]n exp

[
θ1

n∑
i=1

T1(xi) + θk

n∑
i=1

Tk(xi)

]
n∏

i=1

h(xi)

Then, (
∑
T1(Xi), . . . ,

∑
Tk(Xi)) is a k-dimensional minimal sufficient statistic provided that the natural

parameter space Ω ⊂ Rk affinely spans Rk, meaning that the natural parameter space cannot be contained
by a linear subspace (hyperplane) of dimension ≤ k − 1.

See the following example X1, . . . , Xn
iid∼ N(µ, σ2), with µ ∈ R, σ ∈ R+ both unknown.

fµ,σ2(x1, . . . , xn) =
e−

nµ2

2σ2

(2π)−n/2σn
· exp

(
θ ·
(∑

Xi∑
X2

i

))
with θ =

(
µ
σ2

− 1
2σ2

)
Since the natural parameter vector is not a linear subspace of R2, then (

∑
Xi,

∑
X2

i ) is a MSS.
If we impose the restriction that σ2 = µ2(µ ̸= 0) on Ω, then Xi ∼ N1(µ, µ

2) still yields (
∑
Xi,

∑
X2

i ) as
the sufficient statistic but the natural parameter space is:

(θ1, θ2) =

(
1

µ
,− 1

2µ2

)
=⇒ Ω =

{
(θ1, θ2)

∣∣∣∣∣ θ2 = −θ
2
1

2
, θ1 ̸= 0

}

Since Ω is a parabola in R2, it cannot be contained in a linear subspace of dimension ≤ 1, so the parameter
space affine spans R2 and (

∑
Xi,

∑
X2

i ) remains minimal sufficient.
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Property 5 (1-parameter truncation family). Let X1, . . . , Xn be an iid sample from a distribution with pdf
of the truncation form:

fθ(x) =
b(x)I(x ∈ [a, θ])

B(θ)
x > a

where b(x) > 0 is any function, a ∈ R is known, such that for an where normalizing constant B(θ) =∫ θ

a
b(x)dx <∞. Note that T (X) = X(n) is a MSS with respect to this truncation family!
Similarly, T = X(1) is minimal sufficient if X1, . . . , Xn is an iid sample from:

fθ(x) =
b(x)I(x ∈ [θ, a])

B(θ)
x < a

where b(X) > 0 is any positive function on (∞, a), a is known, and B(θ) =
∫ a

θ
b(x)dx <∞.

Property 6 (2-parameter truncation family). Let X1, . . . , Xn be an iid sample from a distribution with a
pdf of the form:

b(x)I(x ∈ [θ1, θ2])

B(θ1, θ2)

with finite real valued parameters, θ1 < θ2, b(x) > 0, and normalizing constant B(θ1, θ2) ={∫ θ2
θ1
b(x)dx <∞

0 else

where normalizing constant B(θ) =
∫ θ

a
b(x)dx <∞.

Then T (X) = (X(1), X(n)) is a MSS with respect to this truncation family!

Property 7 (Ancillary precision). If we have a two-dimensional minimal sufficient statistic (T1, T2) that
can be mapped via a 1-1 function to (U, V ) where V is ancillary, then the joint pdf of (U, V ) can be written
as fθ(u, v) = fθ(u|v) · f(v) and the likelihood ratio:

Lθ1,θ2(u, v) =
fθ2(u, v)

fθ1(u, v)

=
fθ2(u|v)
fθ1(u|v)

Suggesting that efficient inference about θ can be achieved from the conditional distribution of U |V .
For example, consider the distribution Uniform[θ, θ+ 1] has (X(1), X(n)) is a minimal sufficient statistic,

but can be 1-1 mapped to (X(1), R = X(n) − X(1), where the sample range is ancillary. R provides no
information about theta, yet it governs the accuracy of X(1):

θ +R ≤ X(1) +R ≤ 1 + θ

θ ≤ X(1) ≤ 1 + θ −R

0 ≤ X(1) − θ ≤ 1−R

7
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2 Ancillarity, Completeness, & minimum variance unbiased esti-
mation

2.1 Ancillary statistics

Definition 5 (Ancillary Statistic). A statistic V (X) is an ancillary statistic with respect to a distribution
family P = {Pθ : θ ∈ Ω} if the distribution of V (X) is θ-free.

In other words, for any A ⊂ X and any integrable function g : X → R, then Pθ(V (X) ∈ A) and
Eθ(g(V (X))) don’t depend on θ.

Property 8 (Location family and ancillary statistic - Perlman Ex. 12.1). A location family is a family
of distributions that after a location shift, reduces to the same known distribution P0: Pµ = P0 + µ (e.g.,
N(µ, 1) is a location-family with P0 = N(0, 1)). In other words:

Marginal: {fµ(x) := f0(x− µ) | µ ∈ R}

Joint:

{
fµ(x1, . . . , xn) :=

n∏
i=1

f0(xi − µ) | µ ∈ R

}

For any location family, ANY statistic, V (·) satisfying the location invariant property:

V (X1, . . . , Xn) = V (X1 + µ, . . . ,Xn + µ) for all µ ∈ Ω

is an ancillary statistic.

See the following example. Suppose X1, . . . , Xn
iid∼ N(µ, 1).

(i) The sample range, V (X) = X(n) −X(1), is ancillary because:

V (X) = (X(n) − µ)− (X(1) − µ)

= max

x1 − µ
...

xn − µ

−min

x1 − µ
...

xn − µ


=⇒ and (x1 − µ, . . . , xn − µ) ∼ N(0, 1) is free of µ

=⇒ max

x1 − µ
...

xn − µ

−min

x1 − µ
...

xn − µ

 is µ-free

=⇒ V (X) is µ-free

(ii) The sample spacings are ancillary:

V ′(X) =

 X(2) −X(1)

...
X(n) −X(n−1)

 =

 (X(2) − µ)− (X(1) − µ)
...

(X(n) − µ)− (X(n−1) − µ)

 is θ-free

8
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(iii) The sample variance, V ′′(X) = S2
n = 1

n−1

∑n
i=1(Xi − X̄n)

2 is ancillary:

S2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)
2

=
1

n− 1

n∑
i=1

((Xi − µ)− (X̄n − µ))2

=
1

n− 1

n∑
i=1

(Xi − µ)− 1

n

n∑
j=1

(Xj − µ)

2

is θ-free

Property 9 (Scale Family and ancillary statistic). A scale family is a family of distribution that, after a
scale shift, reduces to the same known distribution P0: Pσ = σ · P0 (e.g., N(0, σ2) is a scale family with
P0 = N(0, 1)). In other words:

Marginal: {fσ(x) := σ−1f0
(
σ−1x

)
| σ ∈ R+}

Joint:

{
fσ(x1, . . . , xn) := σ−n

n∏
i=1

f0
(
σ−1xi

)
| σ ∈ R+

}

For any scale family, ANY statistic V (·) satisfying the scale invariant property:

V (X1, . . . , Xn) = V (σX1, . . . , σXn) for all σ ∈ Ω

Here are some examples of ancillary statistics for scale families:

(i) The ordered ratios are ancillary for the scale family:

V (X) =

(
X(1)

X(n)
, . . . ,

X(n−1)

X(n)

)
=

(
σX(1)

σX(n)
, . . . ,

σX(n−1)

σX(n)

)
=⇒ V (X) = V (σX) ∀µ ∈ R

(ii) The t-statistic is ancillary for the scale family:

V (X) =
X̄n

sn

=
σX̄n

σsn
=⇒ V (X) = V (σX) ∀µ ∈ R

Property 10 (Location-scale family and ancillary statistic). A location-scale family is a family of distribu-
tion that, after a location and scale shift, reduces to the same known distribution P0: Pµ,σ = σ ·P0+µ (e.g.,
N(µ, σ2) is a scale family with P0 = N(0, 1)). In other words:

9
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Marginal: {fµ,σ(x) := σ−1f0
(
σ−1(x− µ)

)
| (µ, σ) ∈ R× R+}

Joint:

{
fµ,σ(x1, . . . , xn) := σ−n

n∏
i=1

f0
(
σ−1(xi − µ)

)
| (µ, σ) ∈ R× R+

}

Any statistic V (·) that is location-scale invariant:

V (X1, . . . , Xn) = V (σX1 + µ, . . . , σXn + µ) ∀ (µ, σ) ∈ Ω

is ancillary for the location-scale family

Here are some examples of ancillary statistics for the location-scale family:

1. Normalized sample spacings are ancillary:

V (X) =

(
X(2) −X(1)

X(n) −X(1)
, . . . ,

X(n) −X(n−1)

X(n) −X(1)
,

)
=

(
σ(X(2) − µ− (X(1) − µ))

σ(X(n) − µ− (X(1) − µ))
, . . . ,

σ(X(n) − µ− (X(n−1) − µ))

σ(X(n) − µ− (X(1) − µ))
,

)
=⇒ V (X) = V (σX + µ) ∀ (µ, σ) ∈ Ω

2. Sample range sample standard deviation ratio is ancillary:

V (X) =
X(n) −X(1)

sn

=
σ(X(n) − µ− (X(1) − µ))

σ
√

1
n−1

∑n
i=1((Xi − µ)− (X̄n − µ))2

=⇒ V (X) = V (σX − µ) ∀ (µ, σ) ∈ Ω

2.2 Complete statistics

A complete statistic is the opposite of an ancillary statistic. Note: a complete statistic may not be a
sufficient statistic: e.g., T (X) = 47.

Definition 6 (Complete statistic). Given a statistical model (X ,P), a statistic T (X) is said to be complete
with respect to P if considering any function g, we have:

Eθ[g(T (X))] is θ-free =⇒ g(T (X)) is a constant function

This criterion can be simplified: T (X) is complete if:

∀θ ∈ Ω Eθ(g(T )) = 0 =⇒ g(T ) = 0

This definition illuminates how complete and ancillary statistics are opposites. For example, an ancillary
statistic yields: Eθ(g(V (X))) is θ-free ∀g. A complete statistic yields Eθ(g(V (X))) is θ-free ONLY IF g is
constant.

The following are two important theorems relating complete and ancillary statistics:

10
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Theorem 5 (Completeness versus ancillarity, Basu’s theorem, relation to MSS).

1. Theorem 1: If T is complete with respect to P, then there exists no non-constant function of T that
is ancillary.

2. Theorem 2 (Basu’s theorem): If T is a complete sufficient statistic with respect to P, then we have
for any Pθ, T is independent of ANY ancillary statistic V .

3. Theorem 3: If T is a complete sufficient statistic, then it is also minimally sufficient.

Here’s an example proving complete sufficiency: Suppose X1, . . . , Xn
iid∼ Bern(θ). I claim that T =∑n

i=1Xi is CSS.

(i) Prove SS:

fθ(X) =
n∏

i=1

θXi(1− θ)1−Xi

= θ
∑

Xi(1− θ)n−
∑

Xi

=⇒
∑

Xi is CSS

(ii) Prove completeness:

We know T (X) =
∑

Xi ∼ Bin(n, θ)

=⇒ If Eθ(g(T )) = 0

=⇒
n∑

t=0

g(T )Pθ(T = t) = 0

=⇒
n∑

t=0

g(T )

(
n

t

)
θt(1− θ)n−t = 0

=⇒ (1− θ)n
n∑

t=0

g(T )

(
n

t

)(
θ

1− θ

)t

= 0

=⇒
n∑

t=0

g(T )

(
n

t

)
xt = 0 ∀x ∈ (0,∞)

=⇒ by taking derivative of polynomial wrt X, all polynomial coefficients, g(T ), must be 0-valued

=⇒ g(T ) = 0

Here’s another example: Let X ∼ Unif({1, . . . , θ}). Then f(x) = 1
θ I(x ∈ {1, . . . , θ}.

11
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1. If θ ∈ N, then X is CSS. Then prove completeness by induction:

θ = 1 : E(g(X)) =

θ∑
X=1

g(X) · 1/θ = g(1) = 0

=⇒ g(1) = 0

θ = 2 : E(g(X)) =

θ∑
X=1

g(X) · 1/θ = g(1) + g(2)

2
= 0

=⇒ g(1) + g(2) = 0 =⇒ g(2) = 0

Suppose θ = n and g(0), . . . , g(n) = 0

θ = n+ 1 : E(g(X)) =

θ∑
X=1

g(X) · 1/θ = g(1) + . . .+ g(n+ 1)

n+ 1
= 0

=⇒ g(n+ 1) = 0

Thus, we showed that for all θ ∈ Ω, E(g(X)) = 0 =⇒ g(X) = 0. Thus, X is complete.

2. If θ ∈ N− {7}, then X is NOT CSS. Consider:

g(T ) =


1 if θ = 7

−1 if θ = 8

0 else

Then E(g(T )) = 0 for all θ ∈ Ω2 but g is not constant. Thus, X cannot be complete.

Turns out, we have a general result for statistics with exponential family distributions.

Property 11 (CSS for 1-param/k-param exponential family - Perlman Prop 12.1). (i) 1-param: Let
T (X) (the statistic) have pdf/pmf of the exponential form:

fθ(t) = a(θ)eθth(t), θ ∈ Ω ⊂ R1

If Ω (the natural parameter space) contains a nondegenerate interval (a,b), then T is complete.

(ii) k-param: Let T = (T1, . . . , Tk) have a pdf/pmf of exponential form:

fθ(t1, . . . , tk) = a(θ)eθ1t+···+θktkh(t1, . . . , tk), θ ∈ Ω ⊂ Rk

If Ω (the natural parameter space) contains a nondegenerate k-dimensional rectangle, then T is com-
plete.

But it is not always easy to write the distribution of a statistic. Thankfully, we have a result that shows
that when the data are distributed according to an exponential distribution, then can prove completeness:

Property 12 (CSS for general k-param exponential family - Perlman Prop 12.2). Let X have pdf/pmf of
exponential form:

fθ(x) = a(θ)eθ1T1(x)+···+θkTk(x)h(x), θ ∈ Ω ⊂ Rk

Where Ω (the natural parameter space) contains a k-dimensional open rectangle, then T (X) =
(T1(X), . . . , Tk(X)) is complete.

12
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Here are another couple good examples:

(i) Bivariate normal distribution: let

(
X1

Y1

)
, . . . ,

(
Xn

Yn

)
be iid sample from bivariate normal distribution.

Note this constitutes a 4-parameter exponential family model:

N2

[(
µ
ν

)
,

(
σ2 0
0 τ2

)]
has CSS X̄n, s

2
n, Ȳ

2
n , t

2
n and the sample correlation rn is ancillary.

We also have a result for data distributed according to a 1 and 2-parameter truncation families.

Property 13 (CSS for truncation families).

(i) 1-parameter truncation family: Let X1, . . . , Xn be an iid sample from the truncation pdf:

fθ(x) =
b(x)I(a < x ≤ θ)

B(θ)
x > a

where a ∈ [−∞,∞) is specified, θ ∈ (a,∞) is a real parameter, b(x) > 0 and B(θ) =
∫ θ

a
b(x)dx <

∞;∀θ > a. Then T (X) = X(n) is complete sufficient for θ. Similarly, T (X) = X(1) is complete
sufficient if the indicator I(θ ≤ x < a).

(ii) 2-parameter truncation family: Let X1, . . . , Xn be iid from truncation pdf:

fθ1,θ2(x) =
b(x)I(θ1 ≤ x ≤ θ2)

B(θ1, θ2)
∞ < x <∞

Where −∞ < θ1 < θ2 < ∞, b(x) > 0, B(θ1, θ2) =
∫ θ2
θ1
b(x)dx < ∞. Then T (X) = (X(1), X(n)) is

complete sufficient.

Property 14 (CSS Location-scale Exponential). A location-scale exponential combines features of 1-
parameter exponential and truncation families. Let f0(x) = e−xI(0 < x < ∞). Now the joint pdf of
the location-scale exponential is:

fµ,σ(x1, . . . , xn) =

n∏
i=1

σ−1e−xi/σ

[∫ ∞

µ

σ−1e−xi/σdxi

]−1

I(µ ≤ xi <∞)

=

n∏
i=1

σ−1e−xi/σ
[
e−µ/σ

]−1

I(µ ≤ xi <∞)

=

n∏
i=1

σ−1e−(xi−µ)/σI(µ ≤ x <∞)

=⇒ (
∑

Xi, X(1)) is complete!

Property 15 (CSS nonparametric models - Perlman Ex. 12.9). (i) P = {all symmetric pdfs f(−x) =
f(x) on R1}, then T (X) = |X| is complete for f+ and ψ := sign(X) is ancillary.

13
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(ii) P = {all exchangeable pdfs f(πx) = f(x) on Rn}, then T (X) = |X| is complete and Π :=
rank(X1, . . . , Xn) is ancillary.

(iii) P = {all radial pdfs f(x) = g(||x||) on Rn}, then T (X) = ||X|| is complete for g and the unit vector

X⃗ := X
||X|| is ancillary.

2.3 Minimum Variance Estimation (UMVUE)

Suppose we are interested in estimating τ(θ) based only on the dataX1, . . . , Xn
iid∼ Pθ. How do we measure

the estimation accuracy? We do so with the mean-squared error, which has a very nice decomposition
property:

Definition 7 (Mean squared error and bias-variance tradeoff). For any estimator τ̃ of τ(θ), the MSE is:

MSEθ(τ̃) = Eθ

[
(τ̃(x)− τ(θ))

2
]

Note that the MSE can be decomposed into a variance term and a bias term:

MSEθ(τ̃) = E
[
(τ̃ − τ(θ))

2
]

= E
[
(τ̃ − E(τ̃) + E(τ̃)− τ(θ))

2
]

= (E(τ̃)− τ(θ))
2︸ ︷︷ ︸

bias2

+E
(
(τ̃ − E(τ̃))2

)
︸ ︷︷ ︸

Variance

Thus, for an unbiased estimator τ̃(X), then MSEθ(τ̃) = Var(τ̃)

Definition 8 (UMVUE). An unbiased estimator τ̂ of T (θ) is said to be Uniformly minimum variance
unbiased estimator (UMVUE) if:

Varθ(τ̂) ≤ Varθ(τ̃) ∀θ ∈ Ω and all unbiased estimators τ̃

This is where Uniformly minimum variance gets its name: minimal variance over all θ and unbiased estima-
tors. In other words, the UMVUE has the smallest MSE for all unbiased estimators.

This begs the question: how do we find the UMVUE? The Rao-Blackwell theorem is very useful in this
regard, and guarantees the uniqueness of the UMVUE.

Theorem 6 (Rao-Blackwell Theorem). Assume there exists an unbiased estimator τ̃(X) of τ(θ) and a
complete sufficient statistic: T (X) for θ. Then the following admits a UMVUE:

τ̂(T ) = E[τ̃(X)|T ]

And τ̂(T ) is unique.
Pf sketch

14
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(i) Define
✓
τ (T ) = E(̊τ(X)|T ). ✓

τ (T ) is unbiased because:

E(✓τ (T )) = E (E(̊τ(X)|T )) = E(̊τ(X)) = τ(θ)

And by law of total variance: Var(̊τ) = Var(E(̊τ |T )) + E(Var(̊τ |T )) implying:

Var(
✓
τ (T )) ≤ Var(̊τ(T ))

(ii) Suppose τ̂(T ) is the UMVUE. Since E(✓τ (T )) = τ(θ):

Eθ[τ̂(T )−
✓
τ (T )] = 0 ∀θ ∈ Ω

=⇒ τ̂(T )− ✓
τ (T ) = 0 By completeness of T

=⇒ τ̂(T ) =
✓
τ (T )

Proving that UMVUE is unique.

The Rao-Blackwell theorem importantly gives us a way to find the UMVUE and guarantees its uniqueness.
However, it’s not always easy to calculate the conditional expectation. The following strategy is much easier
and may be the most important theorem for finding UMVUEs: UMVUE supermarket.

Theorem 7 (UMVUE supermarket). If τ̃(X) = ϕ(T (X)) be a function that depends on X only through a
complete sufficient statistic T (X). Then ϕ(T (X)) is the UMVUE for it’s own expectation: E(ϕ(T )).

Thus, if we can find a complete statistic T and guess a function ϕ(T ) such that E(ϕ(T )) equals our target
τ(θ), ϕ(T (X)) will be the UMVUE for our target.

Let’s explore the following example to familiarize ourselves with the power of the supermarket: suppose

X1, . . . , Xn
iid∼ N(µ, σ2

0). We know that T = X̄n is CSS for µ by properties of a 1-D exponential family:

(i) What if we want to find the UMVUE for µ? Let ϕ = 1. Then ϕ(X̄n) = X̄n is UMVUE for E(X̄n) = µ.
So X̄n is UMVUE for µ.

(ii) What if we want to find the UMVUE for µ2? Note that:

E(X̄2
n) = Var(X̄n) +

[
E(X̄n)

]2
=
σ2
0

n
+ µ2

So if we choose ϕ(X̄n) = X̄2
n − σ2

0

n , then E(ϕ(X̄n)) = µ2, so ϕ(X̄n) = X̄2
n − σ2

0

n is UMVUE for µ2.

Property 16 (UMVUE for Normal). Consider X1, . . . , Xn
iid∼ N(µ, σ2). We know(

X̄n, s
2
n = 1

n−1

∑n
i=1(Xi − X̄n)

2
)
is CSS for θ = (µ, σ2).

(i) ϕ(T ) = X̄n is UMVUE for µ.

(ii) ϕ(T ) = s2n is UMVUE for σ2.

15
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(iii) ϕ(T ) = X̄2
n − s2n

n is the UMVUE for µ2.

E (ϕ(T )) = E
(
X̄2

n − s2n
n

)
=

(
µ2 +

σ2

n

)
− σ2

n
= µ2

(iv) ϕ(T ) =
√

n−1
2 · Γ(n−1

2 )
Γ(n

2 )
sn is the UMVUE for σ (standard deviation).

Property 17 (UMVUE for Poisson distribution). Consider X1, . . . , Xn
iid∼ Pois(λ). We know T =

∑
Xi is

CSS for λ.

(i) ϕ(T ) = X̄n is the UMVUE for λ:

E(ϕ(T )) =
∑

E(Xi)

n

=
nλ

n
= λ

(ii) ϕ(T ) = (
∑

Xi)
2−

∑
Xi

n2 is UMVUE for λ2.

E(ϕ(T )) = E

(
(
∑
Xi)

2 −
∑
Xi

n2

)

= E(X̄2
n)︸ ︷︷ ︸

X̄n ∼ N(λ, λ
n )

−E(X̄n)

n

=
λ

n
+ λ2 − λ

n

= λ2

(iii) ϕ(T ) =
(
n−1
n

)∑Xi
is the UMVUE for τ(λ) = e−λ = Pλ(X1 = 0).

Find an unbiased estimator: τ̃ = I(X1 = 0) b/c E(I(X1 = 0)) = Pλ(X1 = 0)

Use Rao-Blackwell: τ̂(T ) = E(τ̃ |T )

= E
(
I(X1 = 0)|

∑
Xi = t

)
= P

(
X1 = 0|

∑
Xi = t

)
=
P (X1 = 0,

∑
Xi = t)

P (
∑
Xi = t)

=
P (X1 = 0) · P (X2 + . . .+Xn = t)

P (
∑
Xi = t)

Note X1 ∼ Pois(λ),

n∑
i=2

Xi ∼ Pois((n− 1)λ)

=
P (Pois(λ) = 0) · P (Pois((n− 1)λ) = t)

P (Pois(nλ) = t)

=

(
n− 1

n

)t

16
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Property 18 (UMVUE for truncation family). Consider X1, . . . , Xn
iid∼ Unif(0, θ). I claim the UMVUE for

θ is
(
n+1
n

)
X(n). We can prove it using supermarket:

Eθ

(
n+ 1

n
X(n)

)
=
n+ 1

n

(
n

n+ 1
θ

)
= θ

UMVUE’s are great because they have the guaranteed smallest variance (MSE) among all unbiased
estimators. However, this doesn’t mean they have the smallest MSE! We can sometimes reduce the MSE by
allowing a bit of bias: this is the rationale behind shrinkage estimators.

An example of a shrinkage estimator is for X1, . . . , Xn
iid∼ N(µ0, σ

2). We shave shown that 1
n

∑n
i=1(Xi −

µ0)
2 is the UMVUE for σ2. However, 1

n−2

∑n
i=1(Xi − µ0)

2 is a shrinkage estimator that admits some bias
for lower MSE.

17
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3 Information inequality

The Cramer-Rao lower bound provides a lower bound on the variance of any unbiased estimator in a
regular (smooth) statistical model. This bound is called the information inequality because it is based on
the Fisher information number. The information inequality provides an alternative approach to UMVUEs
and determines the asymptotic variance of the MLE.

Definition 9 (Regular statistical family). A family of pdfs {fθ(x)|θ ∈ Ω} is regular if Ω is an open set and
fθ(x) is a smooth function of θ for almost every x. Note truncation families are not regular.

3.1 Fisher Information Number

Definition 10 (Score function). Fisher’s score function is just the derivative of the log-likelihood:
d log fθ(x)

dθ .

Definition 11 (Fisher information number (FIN)). The Fisher Information number measures the intrinsic
accuracy of a parametric statistical model. It has the following formulations:

(i) The FIN can be interpreted as the second moment of the Fisher’s score function:

IX(θ) = E

[(
d log fθ(x)

dθ

)2
]

(ii) The FIN can be interpreted as the negative expected value of the second derivative of the log likelihood
function:

IX(θ) = −E
[(

d2 log fθ(x)

dθ2

)]
(iii) The FIN can be interpreted as the variance of Fisher’s score function:

IX(θ) = Var

[(
d log fθ(x)

dθ

)]
In other words, the FIN tell us how peaked the likelihood surface is.

18
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Example: let fθ(x) =
(
n
x

)
θx(1− θ)n−x:

ℓ(θ) = c+ x log(θ) + (n− x) log(1− θ)

∂ℓ

∂θ
=
x

θ
− n− x

1− θ

∂2ℓ

∂θ2
= − x

θ2
+

n− x

(1− θ)2

FIN = −Eθ

[
∂2ℓ

∂θ2

]
=

E(x)
θ2

+
n− E(x)
(1− θ)2

=
n

θ(1− θ)

Property 19 (Properties of FIN).

(i) Non-negativity: IX(θ) ≥ 0

(ii) Additivity: suppose X1, . . . , Xn
iid∼ fθ(·). Then

IX⃗(θ) =

n∑
i=1

Var

(
d

dθ
log fθ(Xi)

)
︸ ︷︷ ︸

IXi
(θ)

=

n∑
i=1

IXi
(θ) = nIXi

(θ)

3.2 Cramer-Rao Lower Bound

The Cramer-Rao lower bound links the accuracy of an estimator to the Fisher Information number.

Theorem 8 (Cramer-Rao Lower Bound). Assuming that IX(θ) > 0, then:

Varθ[T (X)] ≥
{

d
dθEθ(T (X))

}2
IX(θ)

Pf sketch: Relies on the Cauchy-Schwartz Inequality :

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))

C−S
≤
√

E[(X − E(X))]2E[(Y − E(Y ))]2

≤
√
Var(X)Var(Y )

=⇒ Var(X) ≥ Cov(X,Y )2

Var(Y )

Let X = T be our estimator of τ(θ) and let Y = d log fθ(x)
dθ be the score function.

Var(T ) ≥ Cov(T, Y )2

Var(Y )
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Note that:

Cov(T, Y ) = E(TY )− E(T )E(Y )

= E(TY ) (b/c FIsher’s score function has mean 0)

=

∫
T (X)

d
dθfθ(x)

fθ(x)
fθ(x)dx

=
d

dθ

∫
T (x)fθ(x)dx

=
d

dθ
E(T (X))

And

Var(Y ) = Var

(
d log fθ(x)

dθ

)
= IX(θ)

Property 20 (Properties of C-R LB).

(i) The larger the FIN, the lower the variance bound will be.

(ii) If we intend to estimate τ(θ) and we have an unbiased estimator T (X), then the C-R LB reduces to:

Varθ(T (X)) ≥ {τ ′(θ)}2

IX(θ)

(iii) If τ(θ) = θ and we have an unbiased estimator for θ, the bound becomes:

Varθ(T (X)) ≥ 1

IX(θ)

(iv) The C-R LB is just a lower bound, and is not guaranteed to be achievable (i.e., the UMVUE does
not always exist).

(v) The equality on the variance bound holds iff fθ(x) is an exponential family member of the form:

fθ(x) = exp{A(θ)} · exp{B(θ)T (X)} · exp{C(X)}

Where T (X) is a complete sufficient statistic. Then:

Varθ[T (X)] =

{
d
dθEθ(T (X))

}2
IX(θ)

So the the CSS T (X) achieves the C-R LB for E(T (X)). In fact, any linear transforma-
tion, a · T (X) + b achieves the C-R LB for the for a · E(T (X)) + b. However, a nonlinear
transformation of the CSS will not achieve the C-R LB.

Property 21 (Parametrizations and C-R LB). Let θ(ν) be a smooth function of ν, so gν(x) = fθ(ν)(x) be

20
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a smooth reparametrization of the model.

Ig(ν) = Eν

([
d log gν(X)

dν

]2)

= Eν

([
d log fθ(ν)(X)

dν

]2)

= Eν

([
d log fθ(ν)(X)

dθ
· dθ
dν

]2)

= If (θ(ν)) ·
(
dθ

dν

)2

For example, if θ = eν then Ig(ν) = If (e
ν) · e2ν . NOTE: we can swap around

(
dθ
dν

)2
to move between the

FINs. So the information number depends on the parametrization!

3.3 Multidimensional information inequality

The FIN and CR L-B can easily be extended to the multi-dimensional parameter sapce with a gradient
representation:

Definition 12 (Fisher Information matrix). Suppose θ ∈ Rk. The Fisher Information Matrix is defined
as:

IX(θ) := Eθ

[
(∇θ log fθ(x)) · (∇θ log fθ(x))

T
]

where ∇θ log fθ(x) =


∂ log fθ(x)

∂θ1
...

∂ log fθ(x)
∂θk

 ∈ Rk

It can also be written as:

IX(θ) =

I11(θ) I12(θ) . . . I1k(θ)
...

...
...

...
Ik1(θ) Ik2(θ) . . . Ikk(θ)


where Iij(θ) = E

([
∂ log fθ(x)

∂θi

] [
∂ log fθ(x)

∂θj

])
= −E

(
∂2 log fθ(x)

∂θi∂θj

)

Theorem 9 (Cramer-Rao Lower Bound (multidimensional)). Suppose (θ1, . . . , θk) ∈ Rk are unknown and
IX(θ) is positive definite. For any real valued statistic T (X):

Varθ(T (X)) = [∇θE(T (X))]
T
[IX(θ)]

−1
[∇θE(T (X))]
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If we suppose T (X) is an unbiased estimator of τ(θ):

Varθ(T (X)) = [∇θτ(θ)]
T
[IX(θ)]

−1
[∇θτ(θ)]

Definition 13 (Information processing inequality and connection to sufficiency). In short, processing your
data via a function cannot increase the Fisher information:

IX(θ) ≥ IT (θ)

And equality IX(θ) = IT (θ) holds iff T (X) is a sufficient statistic.

3.4 Nuisance parameters

For example, suppose X1, . . . , Xn
iid∼ N(θ1, θ2). Suppose we are only interested in inferring θ1 but wish

to keep θ2 unknown. We can treat θ2 as a nuisance parameter.

Definition 14 (Nuisance parameter and C-R LB). Given a likelihood family (X ,P) with:

P :=
{
Pθ|θ = (θ1, . . . , θk) ∈ Ω ⊂ Rk

}
If we are only interested in estimating τ(θ1). Suppose we have an unbiased estimator T (x) of τ . If (θ2, . . . , θk)
are known, then the 1-parameter CR bound is appropriate:

Varθ[T (X)] ≥

(
∂τ
∂θ1

)2
I11(X)

However, if we want to estimate τ(θ1) with (θ2, . . . , θk) unknown, then (θ2, . . . , θk) are nuisance param-
eters, and we use the k-parameter C-R LB:

∇θ(τ) =

(
dτ

dθ1
, 0, . . . , 0

)
Varθ[T (X)] ≥

(
dτ

dθ1
, 0, . . . , 0

)
[I(θ)]−1︸ ︷︷ ︸

FIM

(
dτ

dθ1
, 0, . . . , 0

)T

=

(
dτ
dθ1

)2
I11·2(θ)

Where I11·2(θ) = I11(θ)− I12(θ)[I22(θ)]
−1I21(θ).

Clearly, I11·2(θ) ≤ I11(θ) so: (
dτ
dθ1

)2
I11(θ)

≤

(
dτ
dθ1

)2
I11·2(θ)

Thus, nuisance parameters lead to a reduction in asymptotic efficiency, and no reduction occurs iff I12(θ) = 0,
meaning that the covariance between the partial score function of θ1 and the vector of other partial score
functions is 0, i.e., θ1 is orthogonal to nuisance parameters.
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Pf: The resulting inequality under nuisance parameter case is because the FIM is positive semi-definite,
meaning we can do a block decomposition:

I(θ) =

(
I11(θ) ∈ R1 × R1 I12(θ) ∈ R1 × Rk−1

I21(θ) ∈ Rk−1 × R1 I22(θ) ∈ Rk−1 × Rk−1

)
And then for ∇θ(τ) =

(
dτ
dθ1

, 0, . . . , 0
)
decomposed into (R1,Rk−1) components:

∇θ(τ)[I(θ)
−1]∇θ(τ)

T =

(
dτ

dθ1
− I12[I22]

−10⃗

)
I−1
11,2

(
dτ

dθ1
− I12[I22]

−10⃗

)
+ 0⃗I−1

22 0⃗

=

(
dτ
dθ1

)2
I11·2(θ)

Per properties of PSD matrices.

Here’s a nice example: suppose X1, . . . , Xn
iid∼ N(θ1, θ2). Then:

fθ1,θ2(xi) =
1√
2πθ2

exp

(
− (xi − θ1)

2

2θ2

)
ℓ(θ1, θ2) = c− 1

2
log(θ2)−

(xi − θ1)
2

2θ2
∂2ℓ

∂θ21
= − 1

θ2

∂2ℓ

∂θ1∂θ2
=

∂2ℓ

∂θ2∂θ1
= −xi − θ1

θ22
∂2ℓ

∂θ22
=

1

2θ22
− (xi − θ1)

2

θ32

The FIM is the expectation of each of these components:

IXi(θ1, θ2) =

(
1
θ2

0

0 1
2θ2

2

)

Thus, θ1 and θ2 are orthogonal and the CR LB for an unbiased estimator of θ1 is:

1

nI11
=
θ2
n

=
σ2

n

and the CR LB for an unbiased estimator of θ2 is:

1

nI22
=

2θ22
n

=
2σ4

n
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4 Maximum Likelihood Estimation

In Fisher’s framework, X ∼ Pθ0 for some unknown θ0. To estimate θ0 based on the observed data, Fisher

proposed locating θ̂ ∈ Ω such that fθ̂(x) = max
θ∈Ω

fθ(x); i.e., your estimate θ̂ is the θ ∈ Ω that maximizes the

likelihood of the data.

4.1 Why is MLE such a good estimator?

Property 22 (Why is the MLE a good estimator?).

1. Strong consistency: θ̂ is almost surely converging to θ0 as n→ ∞.

Proof: Wald proved this using a few useful facts:

(i) Oracle inequality: fθ̂(x) ≥ fθ0(x) by the definition of the maximum likelihood estimator.

(ii) Strong Law of Large Numbers: a sample average convergences almost surely to its target as
n→ ∞

(iii) The KL-divergence quantifies the difference between two pdfs:

KL(p, q) =

∫
log

(
p(x)

q(x)

)
p(x)dx

KL(p, q) ≥ 0 (By Jensen’s inequal)

(iv) Wald’s identifiability criterion: Wald required a density such that ∀θ ̸= θ0, KL(fθ0 , fθ) > 0

By the Oracle inequality:

fθ̂(x) ≥ fθ0(x)

=⇒
n∑

i=1

log fθ̂(xi) ≥
n∑

i=1

log fθ0(xi)

=⇒ 0 ≥ 1

n

n∑
i=1

[
log fθ0(xi)− log fθ̂(xi)

]
SLLN−→ Eθ0

[
log

fθ0(x)

fθ̂(x)

]
= KL(fθ0 , fθ̂) ≤ 0

However, we know that KL(p, q) ≥ 0, but by the Oracle inequality we showed KL(fθ0 , fθ̂) ≤ 0. Under

Wald’s identifiability criterion, we conclude that as n→ ∞, KL(fθ0 , fθ̂) = 0. Thus, lim
n→∞

θ̂ = θ.

2. Asymptotically efficient: the MLE asymptotically attains the Cramer-Rao lower bound. Fisher-
Cramer Theorem for more details.

3. Asymptotically normal: the MLE is asymptotically normally distributed. See Fisher-Cramer The-
orem for more details.

The following theorem outlines the asymptotic efficiency and limiting distribution of the MLE. This is
what makes the MLE such a tantalizing target for inference.

Theorem 10 (Fisher-Cramer Theorem). The Fisher-Cramer demonstrates that the MLE is asymptotically
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normal and attains the Cramer-Rao lower bound:

√
n
(
θ̂ − θ0

)
d

=⇒ N
(
0, [IXi(θ0)]

−1
)

Note that IXi
(θ0) is the FIN/FIM for a single observation.

Proof : relies on Taylor expansions and Slutsky’s theorem:

θ̂ = argmax
θ∈Ω

[
n∏

i=1

fθ(xi)

]

= argmax
θ∈Ω

[
n∑

i=1

log(fθ(xi))

]

=⇒ θ̂ is the soln to
d log(fθ)

dθ

∣∣∣
θ=θ̂

= 0

=⇒ d log(fθ)

dθ

∣∣∣
θ=θ̂

≈ d log(fθ0)

dθ
+ (θ̂ − θ0)

d2 log(fθ)

dθ2
+ high order terms = 0 (Taylor expansion at θ = θ0)

=⇒ d log(fθ0)

dθ
+ (θ̂ − θ0)

d2 log(fθ)

dθ2
= 0

=⇒ −d
2 log(fθ0)

dθ2
√
n(θ̂ − θ0) =

√
n
d log(fθ0)

dθ

Note that:

(i) Second derivative term convergences to FIN.

− 1

n

d2 log(fθ0)

dθ2
= − 1

n

n∑
i=1

d2 log(fθ(xi))

dθ2

∣∣∣
θ=θ0

SLLN−→ −E
(
d2 log(fθ)

dθ2

)
= IXi

(θ0)

(ii)

1

n

d log(fθ0)

dθ
=

1

n

n∑
i=1

(
d log(fθ(xi))

dθ

∣∣∣
θ=θ0

)
︸ ︷︷ ︸

Score function: mean=0, var=FIN

CLT−→ N(0, IXi
(θ0))

Using Slutsky’s Theorem:

−d
2 log(fθ0)

dθ2
√
n(θ̂ − θ0) =

√
n
d log(fθ0)

dθ

=⇒
√
n(θ̂ − θ0)

d−→ [IXi
(θ0)]

−1N(0, IXi
(θ0)) = N(0, [IXi

(θ0)]
−1)

Another fantastic property of MLE is the invariance rule, which says the MLE of a function of θ is just
the function applied to θ̂.

Theorem 11 (Invariance rule). If θ̂ is the MLE of θ, then τ(θ̂) is the MLE of τ(θ). The asymptotic
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distribution of τ(θ̂) is as follows (delta method):

√
n
(
τ̂(θ)− τ(θ)

)
≈

√
n(θ̂ − θ)τ ′(θ)

d→ τ ′(θ)N
(
0, [IXi

(θ)]−1
)

d→ N
(
0, τ ′(θ)2[IXi(θ)]

−1
)

In reality, when we want to use the asymptotic distribution of τ(θ) to construct a confidence interval,

we use the observed fisher information IXi
(θ̂) (since we don’t have the true FIN) which by the CMT,

IXi
(θ̂)

almost surely−→ IXi
(θ).

4.2 Other interpretations and when MLE exists

Definition 15 (MLE and the LR). The MLE has an interpretation via the likelihood ratio:

θ̂ :=

{
θ : Lθ,θ′(x) =

fθ(x)

fθ′(x)
≥ 1 ∀ θ′ ∈ Ω

}
θ̂ is therefore a function of the likelihood ratio, the MSS.

Property 23 (MLE 1-parameter exponential family). When the pdf is log-concave (such as in a 1-parameter
exponential family), there can exist at most one root in the parameter space, which must be the unique CANE
(consistent, asymptotically normal estimator).

(i) Any exponential family fθ(x) = a(θ)eθT (x)h(x) is log concave with natural parameter θ.

(ii) If Eθ(T ) = T (X) (i.e., function of θ = function of X) has a solution θ̂(x), then this solution is unique
and is the MLE of θ.

(iii) IX(θ) = Varθ(T (X)) (recall θ is the natural parameter).

Suppose we want to estimate the mean of a Cauchy distribution: Cauchy(θ, 1). Pearson’s MoM estimator
fails since there is no closed-form formula for the moments. Fisher’s MLE runs into trouble as well, as there
are many different roots to the log likelihood function. Here are a few workarounds:

1. Choose the root that is closest to the sample median, since we know that the Cauchy distribution is
symmetric.

2. Consider a Cauchy distribution with both parameters unknown, this gives us a concave likelihood that
won’t be trapped by local minimizers, although we lose efficiency.

3. Newton-Raphson method: start with a
√
n-consistent (perhaps inefficient) estimator: θ

(n)
(0 . Then
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we can write the Taylor expansion of the log-likelihood:

∂ℓ(θ)

∂θ
≈
∂ℓ(θ

(n)
(0) )

∂θ
+
(
θ
(n)
(1) − θ

(n)
(0)

) ∂2ℓ(θ(n)(0) )

∂θ2
= 0

=⇒ θ
(n)
(1) = θ

(n)
(0) −

∂ℓ(θ
(n)

(0)
)

∂θ

∂2ℓ(θ
(n)

(0)
)

∂θ2

This one-step estimator θ
(n)
(1 is consistent, asymptotically normal, and efficient!
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5 Hypothesis testing

Estimation is only half the story. We are also concerned with testing; whether unknown parameter θ
satisfies a certain property called the null hypothesis.

Definition 16 (Decision function). A decision (testing procedure) is a mapping ϕ : X → [0, 1] (in most
cases {0, 1}) which maps from the data space to a binary scale where 0 : H0 and 1 : H1.

Definition 17 (Neyman-Pearson Criterion/Level/Size/UMP). The Neyman-Pearson criterion is the foun-
dation for statistical testing. Here are the key tenants:

1. Power function: The power function is the probability that we reject H0 as a function of θ (and ϕ):

πϕ(θ) = Eθ[ϕ(x)]

2. Size: the size of a test is defined to be the highest T1 error rate among all θ ∈ Ω0:

size of ϕ := πϕ(θ)
θ∈Ω0

3. Level: a test is level-α if its T1 error rate is at most α.

πϕ(θ)
θ∈Ω0

≤ α

4. UMP: a test is UMP for H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1 at level α if:

πϕ(θ) ≡ E1[ϕ(X)] = sup
ϕ′

πϕ′(θ) ∀θ ∈ Ω1

where ϕ′ is all level α test for H0. I.e., the UMP test has the lowest T2 error rate for all level-α tests.

5.1 Two-point/one-sided alternative hypothesis testing

This section pertains to testing hypotheses of the form:

H0 : θ = θ0 vs H1 : θ = θ1

H0 : θ = θ0 vs H1 : θ > θ0

H0 : θ ≤ θ0 vs H1 : θ > θ0

The Neyman-Pearson Lemma is an extremely valuable result for the UMP test in the case of a two-point
hypothesis.

Theorem 12 (Neyman-Pearson Lemma). Consider the two-point hypotheses: H0 : θ = θ0, H1 : θ = θ1.
The test ϕc(x) based on the likelihood ratio is UMP for testing these two hypotheses at level α = E0[ϕ(X)]
(we choose our threshold c to enforce the desired α):

ϕc(x) =


0 if f1(x)

f0(x)
< c

1 if f1(x)
f0(x)

> c

γ(x) if f1(x)
f0(x)

= c
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In other words, if there exists another level-α test ϕ′, then Eθ1 [ϕ
′(x)] ≤ Eθ1 [ϕ(x)].

Proof : Let αϕ = E0[ϕ(X)] ∫
ϕ(x)f0(x)dx = αϕ∫
ϕ′(x)f0(x)dx ≤ αϕ

Thus,

E1[ϕ(X)]− E1[ϕ
′(X)] =

∫
(ϕ(x)− ϕ′(x)) f1(x)dx

=

∫
{λ(x)>c}

(ϕ(x)− ϕ′(x))︸ ︷︷ ︸
≥ 0

f1(x)dx+

∫
{λ(x)<c}

(ϕ(x)− ϕ′(x))︸ ︷︷ ︸
≤ 0

f1(x)dx+

∫
{λ(x)=c}

(ϕ(x)− ϕ′(x)) f1(x)dx

=

∫
{λ(x)>c}

(ϕ(x)− ϕ′(x)) cf0(x)dx+

∫
{λ(x)<c}

(ϕ(x)− ϕ′(x)) cf0(x)dx+

∫
{λ(x)=c}

(ϕ(x)− ϕ′(x)) cf0(x)dx

= c

∫
(ϕ− ϕ′)f0dx ≥ c(α− α) = 0

=⇒ E1[ϕ
′(X)] < E1[ϕ(X)]

Property 24 (Tests for 1-parameter Exp Families). Suppose X1, . . . , Xn have joint pdf:

fθ(x) = [a(θ)]n exp

(
θ

n∑
i=1

T (xi)

)
n∏

i=1

h(xi)

Then the MP test at level α for testing H0 : θ0, H1 : θ1 with θ0 < θ1 is:

ϕ(x) =


0 if

∑n
i=1 T (xi) < cα

1 if
∑n

i=1 T (xi) > cα

γ(x) if
∑n

i=1 T (xi) = cα

If T is continuous then cα can be chosen such that Pθ0(T > cα) = α. If T is discrete, we can select cα and
γ(x) to satisfy:

Pθ0(T > cα) + γPθ0(T = c) = α

Note: since the test depends only on T and not on the alternative, it is UMP for testing H0 : θ = θ0
versus H1 : θ > θ0.

Definition 18 (Monotone Likelihood Ratio (MLR)). fθ(x) has a strict MLR if there exists a real-valued
sufficient statistic T (X) such that for each pair θ1 < θ2 ∈ Ω, the LR is strictly increasing as a function of
T (X):

fθ2(x)

fθ1(x)
= gθ1,θ2(T (x)) ∀ θ1 < θ2 ∈ Ω
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Theorem 13 (MLR and UMP for one-sided alternatives). Suppose you are interested in one of the two sets
of hypotheses:

H0 : θ = θ0 vs H1 : θ > θ0

H0 : θ ≤ θ0 vs H1 : θ > θ0

Let fθ(x) have MLR in T and let ϕ(T ) be the test that:

ϕ(t) =


0 if t < cα

1 if t > cα

γα if t = cα

Where cα and γα chosen to satisfy:

Pθ0 [T > cα] + γαPθ0 [T = cα] = α

Then ϕ is the UMP-level test for the two hypotheses above.

5.2 Hypothesis testing with two-sided alternatives

Suppose we are interested in testing one of the following sets of hypotheses:

H0 : θ = θ0 vs H1 : θ ̸= θ0

H0 : a ≤ θ ≤ b vs H1 : θ < a or b < θ

We turn to slight variations on the likelihood ratio test:

Definition 19 (General LRT for composite hypotheses). Suppose one of the following cases:

(a) H0 : θ ∈ Ω0 and H1 : θ ∈ Ω1 ≡ Ω− Ω0. If

inf
θ∈Ω1

KL(θ0, θ) > 0 ,∀θ0 ∈ Ω0

inf
θ∈Ω0

KL(θ1, θ) > 0 ,∀θ1 ∈ Ω1

Then the LRT is:

ϕ(x1, , xn) =

0 if
fθ̂1

(xi)

fθ̂0
(xi)

≤ 1

1 if
fθ̂1

(xi)

fθ̂0
(xi)

> 1

Where θ̂i is the MLE under Hi.

(b) H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω where Ω0 ⊂ Ω ⊂ Rk, dim (Ω) = k − r and dim (Ω0) = k − r − s where s
is the number of free parameters.

Then the LRT is:

ϕ(x1, , xn) =


0 if

fθ̂0
(xi)

fθ̂(xi)
> c

1 if
fθ̂0

(xi)

fθ̂(xi)
< c

γ if
fθ̂0

(xi)

fθ̂(xi)
= c
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Where θ̂0 is the MLE restricted to Ω0 and θ̂ is the unrestricted MLE.

And the p-value is:

p = sup
θ0∈Ω0

P (λ ≤ λobs)

Wilk’s theorem is a very valuable way to get the distribution of the general LRT under case (b)

Theorem 14 (Wilks Theorem). Let fθ be a sample from a regular family (satisfies Cramer and Wald

conditions). Let the LRT statistic, λ(x1, . . . , xn) =
fθ̂0

(xi)

fθ̂(xi)
, under H0 has asymptotic chi-square distribution

with df = # of free parameters:

−2 log(λ)
d→ χ2

s (Where s = dim(Ω)− dim(Ω0))
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6 Basic decision theorey

Definition 20 (Decision rule and Risk). A decision rule is a map from the data space to the action space:
d(·) : X → A.

Risk quantifies the reward/goodness of a decision based on a loss function:

R(d, θ) = Eθ(L(d(X), θ))

Definition 21 (Admissibility). A decision d(·) is admissible if there does not exist another decision d
′

such that R(d′, θ) ≤ R(d, θ) ∀θ ∈ Θ. I.e., there does not exist another decision that achieves lower risk over
all θ ∈ Θ.

E.g., the sample mean in X1, . . . , Xn
iid∼ Nd(µ,Σ) is inadmissible for estimating µ whenever d ≥ 3 (Stein’s

shrinkage estimator) with squared loss.

Definition 22 (Wald’s minimax principle and Bayes rule). A minimax decision has the smallest worst
risk:

max
θ∈Θ

R(d, θ) = inf
d′

[
max
θ∈Θ

R(d′, θ)

]
The Bayes risk is the risk averaged over the prior distribution of θ:

B(d, π) :=

∫
θ∈Θ

R(d, θ)π(θ)dθ

A bayes rule minimizes the bayes risk.

7 General strategies

1. Proving sufficient:

(i) Fisher-Neyman factorization theorem

(ii) Show distribution of X|T (X) does not depend on θ

(iii) Is this statistic a 1-1 map of a known sufficient statistic?

(iv) Is the distribution family you’re considering a subfamily of a larger family with known sufficient
statistic?

(v) Is the pdf symmetric (abs value of Xis)? Permutation-invariant (order stats)? Radial (||X||)?

2. Proving not sufficient:

(i) Show that T (X) does not satisfy the factorization theorem.

(ii) Show X|T (X) depends on θ

(iii) Show there does not exist a 1-1 map from a known SS to your proposed statistic.
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3. Proving minimal sufficient:

(i) Invoke Lehmann-Scheffe theorem (remember iff proof).

(ii) Invoke a family-based result (exponential (T (X) = (
∑
T1(Xi), . . . ,

∑
Tk(Xi)) when Ω affinely

spans Rk), truncation (above: X(n), below: X(1), two-sided: (X(1), X(n)).

4. Proving not minimal sufficient:

(i) Show the proposed statistic is not sufficient.

(ii) Find a sufficient statistic, T̃ such that there exists no function such that T = f(T̃ ) (i.e., find a
sufficient statistic that cannot be reduced to T ).

5. Proving ancillary:

(i) Show that the distribution of your proposed statistic is θ-free (i.e., does not depend on θ).

(ii) Invoke a family-based result (location, scale, location-scale)

6. Proving complete:

(i) Show that ∀θ ∈ Ω, E(g(T )) = 0 =⇒ g(T ) = 0. Use polynomial trick, induction, or other clever
methods.

(ii) Invoke a family-based result (exponential family (T (X) = (T1(X), . . . , Tk(X)) when Ω contains
an open interval), truncation family (X(n)), etc.)

7. Proving not complete:

(i) Show the statistic, T (X) is not minimal sufficient

(ii) Basu’s theorem: show that your proposes CSS is not independent of an ancillary statistic.

(iii) Find a non-constant function T (X) where E[T (X)] is 0 or constant. For multi-dimensional T (X),
solve for first and second moments of each Tj(X) and try and find a linear combination that
equals 0.

8. Proving/Finding UMVUE:

(i) Rao-Blackwell theorem: we can improve an unbiased estimator by conditioning on a CSS. And
guarantees uniqueness of the UMVUE.

(ii) UMVUE supermarket: a function of a CSS is UMVUE for its expectation.

(iii) If you know all unbiased estimators have a common form and you have an expression for the
variance, you can minimize using calculus.

9. Minimizing MSE

(i) If asked to minimize, write out and minimize by calculus:

Eθ

[
(τ̂(θ)− τ(θ))2

]
= E(E((τ̂(θ)))− τ(θ))2 +Var(τ̂(θ)) = bias2 + variance

10. FIN/FIM and C-R LB:

(i) FIN is the variance of the score function (telling us how peaked the likelihood is):

IX(θ) = −Eθ

[
d2 log fθ(x)

dθ2

]
FIN is non-negative, additive, and is sensitive to parametrization.
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(ii) C-R LB:

General estimator T (X): Var(T (X)) ≥ (Eθ[T (X)])
2

IX(θ)

Unbiased estimator T (X) of τ(θ): Var(T (X)) ≥ (τ ′(θ))
2

IX(θ)

Multi-dimensional T (X): Var(T (X)) ≥ (∇θ[Eθ(T (X))])
T
[Iθ(X)]−1 (∇θ[Eθ(T (X))])

(iii) Attainment: an estimator T (X) achieves the C-R LB iff fθ(x) is an exponential family of the
form:

fθ(x) = exp(A(θ)) exp(B(θ)T (x)) exp(c(x))

in which case T (X) is an unbiased estimator for E(T (X)). Note that any linear function f(T (X))
is unbiased estimator for E(f(T (X))) and achieves the C-R LB. If we want to estimate τ(θ) and
τ is non-linear, our estimator will not achieve the C-R LB.

(iv) Nuisance parameters: usually increase the C-R LB, stays the same if parameters are orthogonal.

11. Maximum Likelihood estimation:

(i) If regular pdf, maximize the log-likelihood. If not, inspect and maximize the likelihood.

(ii) Check second derivative condition: f ′′(x) < 0 indicates maximum in univariate case. If in bivariate
case:

∂2f(x0, y0)

∂x2
∂2f(x0, y0)

∂y2
− ∂2f(x0, y0)

∂x∂y

2

> 0 and
∂2f(x0, y0)

∂x2
< 0 =⇒ local maximum

(iii) Fisher Cramer:
√
n(θ̂ − θ) → N

(
0, [IXi

(θ)]−1
)
or for iid samples: θ̂ → N(θ, [IX(θ)]−1

(iv) The invariance rule says that the MLE of τ(θ) is τ(θ̂). To find asymptotic distributions of MLE
for a function of θ, τ(θ), we use the delta method:

√
n
(
τ̂(θ)− τ(θ)

)
→ N

(
0, τ ′(θ)2[IXi(θ)]

−1
)

12. Hypothesis testing

(i) Power function: probability of rejecting the null hypothesis as a function of θ.

πϕ(θ) = Eθ[ϕ]

(ii) Level: a test is size α fir testing H0 : θ ∈ Ω0 if:

πϕ(θ)
θ∈Ω0

≤ α

(iii) Size: a test is size α if the worst T1 error rate for testing H0: θ ∈ Ω0 is α:

πϕ(θ)
θ∈Ω0

= α

(iv) UMP: a test is UMP level α if the test has the smallest T2 error rate among all α level tests:

πϕ(θ) = sup
ϕ′ of level α

πϕ′(θ) for all θ ∈ Ω1

(v) Finding the MP test (2-point):
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(i) For H0 : θ = θ0 versus H1 : θ = θ1, the NP lemma says that the MP test is:

ϕ(x) =


0 λ(x) = f1(x)

f0(x)
< c

1 λ(x) = f1(x)
f0(x)

> c

γ(x) λ(x) = f1(x)
f0(x)

= c

(ii) If λ(x) is MLR with respect to a statistic T (X), then the MP test for H0 : θ = θ0 versus
H1 : θ = θ1(> θ0) is:

ϕ(x) =


0 T (X) < c′

1 T (X) > c′

γ(x) T (X) = c′

Note: T =
∑
T (Xi) that falls out of exponential family can be used in place of the LR in LR

test.

(iii) Finding c′: find c′ such that

Eθ0 [ϕ(X)] = Pθ0(ϕ(X) = 1) = Pθ0(T (X) > c′) = α

We can do this either by setting c′ equal to the (1− α) quantile of the distribution of T (X)
or by calculating the CDF.

(iv) Flipping signs: if our test depends on a MLR statistic, and our alternative hypothesis is below
our null, H1 : θ = θ1(< θ0), flip the inequality directions above.

(vi) Finding the UMP (1-sided alternative):

(i) If a MP two-point test does not depend on the alternative θ1 > θ0, then it is UMP for the
testing the one-sided alternative: H1 : θ > θ0.

(ii) MLR: if the likelihood ratio is an increasing function of T (X), then the pdf has the monotone
likelihood ratio property. For testing:

H0 : θ = θ0 vs H1 : θ > θ0

H0 : θ ≤ θ0 vs H1 : θ > θ0

the UMP level α test is:

ϕ(t) =


0 if T < cα

1 if T > cα

γα if T = cα

where cα and γα are chosen to satisfy:

Pθ0 [T > cα] + γαPθ0 [T = cα] = α

(iii) Flipping signs: if our test depends on a MLR statistic, and our alternative hypothesis is below
our null, H1 : θ < θ0, flip the inequality directions above.

(vii) General hypothesis tests with LR

(i) For general tests of the form:

H0 : θ ∈ Ω0 vs H1 : θ ∈ Ω− Ω0

H0 : θ = θ0 vs H1 : θ ̸= θ0

H0 : θ1 = θ2 vs H1 : θ1 ̸= θ2

H0 : a < θ < b vs H1 : θ /∈ [a, b]
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Where Ω0 ⊂ Ω are subsets of Rk, we consider the test based on the likelihood ratio statistic
based on the restricted and unrestricted MLEs:

λ =

sup
θ∈Ω0

fθ(x)

sup
θ∈Ω

fθ(x)
=
fθ̂0(x)

fθ̂(x)

The LRT form is:

ϕ(x) =


0 if λ > c [Note: not λ < c!]

1 if λ < c [Note: not λ > c!]

γα λ = cα

(ii) Wilk’s theorem: If we have an iid sample from a regular distribution family satisfying the
Cramer-Wald conditions, the asymptotic distribution of the LR statistic is:

−2 log(λ)
d→ χ2d− d0

Where d = dim(Ω) and d = dim(Ω0) (number of free parameters). Then the LRT is:

ϕ(x) =


0 if − 2 log(λ) < χ2

d−d0
(1− α)-quantile

1 if − 2 log(λ) > χ2
d−d0

(1− α)-quantile

γα −2 log(λ) = χ2
d−d0

(1− α)-quantile

13. Useful inequalities:

(i) Cauchy-Schwarz: [E(XY )]2 ≤ E(X2)E(Y 2) and [Cov(X,Y )]2 ≤ Var(X)Var(Y )

(ii) Jensen: For convex function φ, φ(E(X)) ≤ E(φ(X))
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