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1 Weak convergence of Empirical Processes

1.1 Weak convergence in metric spaces

A good resource is Vdv Ch 18. We review some useful definitions regarding metric and normed spaces:

Definition 1 (Metric and Normed Spaces).
Recall a metric space is a set D equipped with a metric that satisfies:

1. Symmetry: d(x, y) = d(y, x)

2. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

3. d(x, y) = 0 ⇐⇒ x = y

A semimetric satisfies 1 and 2 but not necessarily 3.
An open set is the union of open balls; a closed set has an open complement. The interior Å is the largest
open set contained in A. While the closure Ā is the smallest closed set containing A.
A sequence xn converges to x iff d(xn, x) → 0.
A function f : D → E between two metric spaces is continuous at a point x iff f(xn) → f(x) for every
sequence xn → x. A function is is continuous at every x iff the inverge image f−1(G) of every open set
G ⊂ E is open in D.
A subset of a metric space is dense iff its closure is the whole space. A metric space is separable iff it has
a countable dense subset. A subset K is totally bounded iff for every ϵ > 0, it can be covered by finitely
many balls of radius ϵ. A subset of a metric space is compact iff it is closed and every sequence K has a
converging subsequence (a subset of a semimetric space is compact iff it is totally bounded and closed).
A semimetric space is complete if every Cauchy sequence, d(xn, xm) → 0 as n,m→ ∞ has a limit.

A normed space D is a vector space equipped with a norm, i.e., a map || · || : D → [0,∞) s.t. for
every x, y ∈ D and α ∈ R

1. Triangle inequality: ||x+ y|| ≤ ||x||+ ||y||

2. ||αx|| = |α|||x||

3. ||x|| = 0 ⇐⇒ x = 0

A seminorm satisfies 1 and 2 but not necessarily 3.

Definition 2 (Borel σ-algebra, Random element). A Borel σ-algebra on a metric space D is the smallest
σ-algebra (nonempty collection of subsets closed under complements, countable unions/intersections) that
contains the open sets.
A function defined according to the metric spaces is Borel-measurable if it is measurable relative to the Borel
σ-algebras: f : (X,Σ) → (Y, T ) where Σ, T are the respective σ-algebras.
A borel-measurable map defined on a probability space is referred to as a random element.

Now we define weak convergence on metric spaces!

Definition 3 (Weak convergence, convergence in prob/a.s.).
A sequence of random elements Xn with values in metric space D converges weakly to a random element
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X if:
E(f(Xn)) → E(f(X)) (1)

For every bounded continuous function f : D → R. In some cases, the random elements need not be Borel-
measurable. We denote weak convergence via Xn ⇝ X.
An arbitrary sequence of maps Xn : Ωn → D converges in probability to X if:

P (d(Xn, X) > ϵ) → 0

for all ϵ > 0.
The sequence Xn converges almost surely to X if there exists a sequence of measurable random variables
∆n s.t. d(Xn, X) ≤ ∆n and ∆n

a.s.→ 0.

Next we introduce the Portmanteau lemma, which provides equivalent definitions of weak convergence.

Theorem 1 (Portmanteau).
For arbitrary maps Xn : Ωn → D and random element X with values in D, TFAE:

(i) E(f(Xn)) → E(f(X)) for all bounded continuous functions f

(ii) E(f(Xn)) → E(f(X)) for all bounded, Lipschitz functions f .

(iii) P (Xn ∈ B) → P (X ∈ B) for all Borel sets B with P (X ⊂ δB) = 0 (boundary prob 0)

Next we present the continuous mapping theorem, which ensures that continuous maps of convergent
sequences converge to continuous map applied to the limit.

Theorem 2 (Continuous mapping theorem).
Let (D, d) and (E, e) be two metric spaces. Suppose {Xn}∞n=1 is a sequence of D-valued random variables
and that X is D0-valued where D0 ⊂ D. Let f : D → E be continuous on D0. Then:

1. If Xn ⇝ X, then f(Xn)⇝ f(X)

2. If Xn
P→ X, then f(Xn)

P→ f(X)

3. If Xn
a.s.→ X, then f(Xn)

a.s.→ f(X)

We present Slutsky’s theorem, which describes weak convergence proximally.

Theorem 3 (Slutsky’s Theorem (HW 1.1)).
Suppose (D, d) is a metric space endowed with metric d. Also suppose that D is both complete (meaning every
convergent sequence is Cauchy sequence) and separable (contains a countably dense subset), i.e., suppose D
is a Polish space.

1. Suppose (Xn, Yn) are random elements of D× D. If Xn ⇝ X and d(Xn, Yn) → 0, then Yn ⇝ X.

2. Suppose (Xn, Yn) are random elements of D× D. If:

Xn ⇝ X

Yn ⇝ Y
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Then (Xn, Yn) ⇝ (X,Y ), and continuous mapping theorem provides the application to continuous
maps (sums, products, differences, quotients).

1.2 Empirical Processes

Studying the empirical process allows us to do inference on function-valued parameters, such as a cumu-

lative distribution function! By law of large numbers and central limit theorem, we know that Fn(t)
p→ F0(t)

and
√
n(Fn(t)−F0(t))⇝ N(0, F0(t)(1−F0(t)) for every t. Yet in this section, we improve on this result by

considering t→ Fn(t) as a random function.

1.2.1 Distribution Functions

The Glivenko-Cantelli theorem extends the law of large numbers and gives uniform convergence of the
empirical CDF.

Theorem 4 (Glivenko-Cantelli theorem (vdV 19.1)). Suppose X1, . . .
iid∼ F0, then ||Fn−F0||∞ = sup

t
|Fn(t)−

F0(t)|
a.s.→ 0

The uniform/functional central limit theorem describes the convergence of the scaled empirical CDF
minus the true CDF via Donsker’s Theorem:

Theorem 5 (Donsker’s Theorem (vdV 19.3)).

If X1, . . .
iid∼ F , the sequence of empirical processes

√
n(Fn − F0) ⇝ G, a mean zero Gaussian process with

covariance function F0(min(ti, tj))− F0(ti)F0(tj).

Proof : If we are interested in estimating the distribution function F0(t), a natural estimator would be
Pnf(t) with f ∈ F := {f : x→ 1(x ≤ t) : t ∈ R} is the relevant class of functions.

Using results from 582, we know that half-line indicators in F have envelope function F̄ = 1 and
have VC-index of 2. Thus, it holds that:

sup
Q

log(N(ϵ,F , L2(Q))) ≤ C log

(
1

ϵ

)
<∞

Allowing us to verify that F satisfies the uniform entropy integral bound in Theorem 8. Thus, F is Donsker,
proving Donsker’s Theorem.

1.2.2 Glivenko-Cantelli and Donsker (abstract)

The abstract Glivenko-Cantelli theorem make the convergence of Pnf to P0f uniform over a class of
functions F . The abstract Donsker theorem makes convergence of an empirical process evaluated at f
uniform over a class of functions.
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Definition 4 (Empirical process and ℓ∞-space).
We are often interested in studying the weak convergence of the empirical process evaluated at a function
f ∈ F :

Gf :=
√
n(Pn − P0)f

We are interested in studying the convergence of the stochastic process {Gf : f ∈ F}. To do this, we require
a metric space in which to describe stochastic convergence. A useful space for this purpose is:

ℓ∞(F) :=

{
H : F → R such that sup

f∈F
|H(f)| <∞

}

equipped with uniform norm:

|| · ||F : H → sup
f∈F

|H(f)|

Definition 5 (Glivenko-Cantelli (abstract, vdV 19.4)).
A class of functions F is Glivenko-Cantelli if:

||Pnf − P0f ||F = sup
f∈F

|Pnf − P0f |
a.s.→ 0

Sufficient condition: a class of functions F with finite bracketing number N[](ϵ,F , L1(P )) <∞ for all ϵ > 0
is Glivenko-Cantelli.

We may ask under what conditions a stochastic process {Xn(f) : f ∈ F} converges weakly in ℓ∞(F)?

Theorem 6 (Weak convergence of stochastic process in ℓ∞(F)).
Xn converges in ℓ∞(F) to a tight random element X if and only if:

1. Convergence in distribution of marginals: for each finite collection of functions {f1, . . . , fm} ⊂ F , it
holds that:

{Xn(fj) : j = 1, 2, . . . ,m}⇝ {X(fj) : j = 1, 2, . . . ,m}

2. Existence of a suitable psuedometric ρ : F × F → [0,∞) such that:

(a) F not too large: (F , ρ) is totally bounded, i.e., N(ϵ,F , ρ) <∞
(b) Xn is smooth: Xn is asymptotically uniform equicontinuous:

Defining: F(δ) := {(f1, f2) ∈ F2 : ρ(f1, f2) < δ}
For all positive sequences δn → 0, we require:

sup
(f1,f2)∈F(δn)

|Xn(f1)−Xn(f2)| = oP (1)

What about when we restrict our attention to a particular kind of stochastic process, the empirical
process? When will it be ℓ∞(F)-valued? What is its weak limit?
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Definition 6 (P0-Donsker).
A function class F is P0-Donsker if Gn ⇝ G in ℓ∞(F) ⇐⇒ ||Gn||F → ||G||F where G is a mean-0 Gaussian
process with covariance function:

(f1, f2) → P0(f1f2)− P0(f1)P0(f2)

To show a function class is Donsker, we must satsify the conditions in Theorem 6

1. ℓ∞(F)-valued: Gn is ℓ∞(F)-valued when there exists a P0-integrable envelope function F̄ that upper
bounds f ∈ F pointwise:

sup
f∈F

|f(x)| ≤ F̄ (x) ∀ x ∈ X

2. Convergence of marginals: this is guaranteed by the MV-CLT.

3. Existence of psuedometric that ensures total boundedness and asymptotic uniform equicontinity. The
guaranteed pseudometric for Donsker classes can always be taken as:

ρP0
(f1, f2) = ||f1 − f2||L2(P0) :=

[∫
(f1(x)− f2(x))

2dP0

]1/2
Sufficient conditions: see Theorem 8.

We don’t always have to rely on proving a function class is Donsker, as we can leverage permanence
properties.

Theorem 7 (Donsker Permanance Properties).
If F and G are P-Donsker classes, then the following are also P-Donsker

1. F + G = {f + g : f ∈ F , g ∈ G}

2. −F = {−f : f ∈ F}

3. F ∪ G

4. Suppose that only F is P-Donsker, then if G ⊂ F , G is P-Donsker.

5. If F is Donsker, F̄ (i.e., the closure, the set of all elements of F and its L2(P ) limit points) is also
Donsker.

Theorem 8 (Sufficient Conditions for a Class to be Donsker (vdV 19.5, 19.14)).

1. Satisfy finite bracketing integral: F is P0-Donsker if:

J[](δ = 1,F , L2(P )) :=

∫ δ

0

√
logN[](ϵ,F , L2(P )dϵ <∞

2. Satisfy uniform integral bound with finite square integrable envelope: F is P0-Donsker if it has an
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envelope function F̄ satisfying PF̄ 2 <∞ and

J(δ = 1,F , L2(P )) =

∫ δ

0

√
log sup

Q
N(ϵ||F̄ ||Q,2,F , L2(Q)) <∞

Where ||F̄ ||Q,2 = QF̄ 2

Example 1 (Constructing Confidence Bands for CDF).
Suppose our goal is to construct confidence bands for a CDF:

F0(t) := P0(X ≤ t)

We will consider estimating F0 using the class of functions H = {x → 1(x ≤ t) : t ∈ R}. Recall that the
stochastic process {

√
n(Fn(t)− F0(t)) : t ∈ R} = {Gnh : h ∈ H} is just the empirical process evaluated at h

as h varies in H.
Note by Donsker’s theorem that Gn ⇝ G in ℓ∞(H) where G is a mean-0 Gaussian process.
By the continuous mapping theorem, ||Gn||H ⇝ ||G||H, i.e., the supremum norm over H.
Since our goal is to construct confidence bands for F0(t), we must construct (Ln, Un) s.t.

lim
n→∞

P (Ln(t) ≤ F0(t) ≤ Un(t)) ≥ 1− α ∀ t ∈ R

We can construct a valid asymptotic (1− α)-confidence band for F0 via:

Ln(t) := Fn(t)−
c√
n

Un(t) := Fn(t)−
c√
n

where c is the (1− α)-quantile of ||G||H.
To show this is a valid confidence band:

lim
n→∞

P0(Ln(t) ≤ F0(t) ≤ Un(t)) ∀t ∈ R

= lim
n→∞

P0

(
Fn(t)−

c√
n
≤ F0(t) ≤ Fn(t)−

c√
n

)
∀t ∈ R

= lim
n→∞

P0

(
−c ≤

√
n(F0(t)− Fn(t)) ≤ c

)
∀t ∈ R

= lim
n→∞

P0

(√
n|Fn(t)− F0(t)| ≤ c

)
∀t ∈ R

= lim
n→∞

P0

(
sup
t

√
n|Fn(t)− F0(t)| ≤ c

)
= lim
n→∞

P0

(
sup
h∈H

√
n|(Pn − P0)h| ≤ c

)
= lim
n→∞

P0 (||Gn||H ≤ c)

= P0 (||G||H ≤ c)

= (1− α)

Example 2 (Examples of Donsker Classes).
Listed below are several examples of function classes that are P0-Donsker:
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1. Any VC class (vdV 19.2)

(a) Class of half-line indicators: F := {1(x ≤ t) for t ∈ R} (VC=1)

(b) Class of indicators on bounded support: F := {1(−a ≤ x ≤ b) for a < b ∈ R} (VC=1)

(c) Class of bivariate half-line indicators F := {1(x ≤ t1)× 1(y ≤ t2) for (t1, t2) ∈ R2} (VC=2)

(d) Any boolean valued function that can be computed using a finite number of arithmetic or com-
parison operations.

(e) Set of polynomials of degree less than some number: F := {
∑
λifi ; f1 = 1, f2 = x, f3 =

x2, . . . , fk = xk}
(f) Union, intersection, positive/negative restriction, etc. of known VC classes (permanence proper-

ties).

2. Any function class with envelope and satisfies the bracketing/uniform entropy integral (vdV 19.2)

(a) Bounded Lipschitz functions: F := {f : [0, 1] → [0, 1]; f(x)− f(y) ≤ L|x− y|}
(b) Functions Lipschitz in indexing parameters: F := {gβ : β ∈ Rp; ||β||2 ≤ 1 and s.t. |gβ1

(x) −
gβ1

(x)| ≤ m(x)||β1 − β2|| for measurable m(x)}
(c) Sobolev Classes: F := {f : [0, 1] → R; ||f ||∞ ≤ 1, f (k−1) abs continuous,

∫
(f (k))2dx ≤ 1} for

k ≥ 1.

(d) Bounded monotone functions: F := {f : R → [−M,M ] s.t. M <∞}
(e) Functions of bounded variation: can be considered as differences of monotone increasing functions

from previous bullet. F := {f : R → R; ||f ||V ≤M} where ||f ||V :=
∫
|df(x)| is the total variation

norm.

i. In more generality: F := {f : Rm → R; ||f ||∗V ≤ M} is Donsker where ||f ||∗V is the uniform
sectional variation norm.

(f) If F and G are Donsker (have finite uniform entropy integral relative to envelopes F and G), the
class FG of functions x→ f(x)g(x) is Donsker.

(g) Fixed Lipschitz transformation: a Lipschitz function ϕ(f, g) is donsker if f, g range over Donsker
classes F ,G.

3. Any function class that is not Glivenko-Cantelli cannot be Donsker.

4. Donsker preservation properties.

The following result will become very useful later on as we study the construction of efficient estimators.

Theorem 9 (Controlling empirical process terms (vdV 19.24)).
To establish

√
n(Pn − P0)gn = oP (1) we require:

1. P0g
2
n = oP (1)

2. gn is in a Donsker class F

Variant: to establish
√
n(Pn − P0)(hn − h0) = oP (1) we require:

1. {hk}∞k=1 is a sequence of random functions in L2(P ) s.t., P (hn ∈ F) → 1 for Donsker class F ⊂ L2(P )

2. P (hn − h0)
2 = oP (1) for some h0 ∈ F

8
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2 Asymptotic Linearity

Motivation: two statisticians are asked to estimate ψ1 and ψ2. Together their goal is to estimate
ψ0 = ψ1 +ψ2. Suppose that both ψ1n and ψ2n are

√
n-consistent and asymptotically normal (CAN).

Will ψ0n := ψ1n + ψ2n be CAN? Not necessarily, but in some cases, yes!

Definition 7 (Asymptotic Linearity, Influence Function).
An estimator ψn of ψ0 is asymptotically linear if it can be written as:

ψn − ψ0 =
1

n

n∑
i=1

ϕP0(Xi) + oP (1/
√
n) (2)

Where ϕP0 satisfies:

1. P0-Mean 0: P0ϕP0
= 0

2. P0-squared integrable: P0ϕ
2
P0
<∞

The function ϕP0 is known as the influence function of ψn. Heuristically, the influence function evaluated
at Xi measures first-order contribution of observation i to the estimator.

Note that we’ve defined asymptotically linear in such a way that implies consistency and asymptotic
normality !

√
n(ψn − ψ0) =

√
n

[
1

n

n∑
i=1

ϕP0
(Xi) + oP (1/

√
n)

]

=
√
n

[
1

n

n∑
i=1

ϕP0(Xi)− E[ϕP0(X)]

]
+ oP (1)

⇝ N(0,Var[ϕP0
])

Example 3 (ALE examples).
Sample mean: a finite-sample and asymptotically linear estimator. ψn = 1

n

∑n
i=1Xi is an estimator of

ψ0 = EP0
[X]. We can write it as:

ψn − ψ0 =
1

n

n∑
i=1

Xi − ψ0

Implying the influence function is ϕP0(x) = x− ψ0.
Sample variance (unknown mean): a nonlinear but asymptotically linear estimator. Let ψ0 = σ2

0 which
we estimate via ψn = σ2

n = 1
n

∑n
i=1[Xi − µn]

2 with µn = EPn
(X). Letting µ0 = EP0

(X), we have:

ψn = σ2
n ≡ Var[X] ≡ Var[X − µ0]

=
1

n

n∑
i=1

[Xi − µ0]
2 −

[
1

n

n∑
i=1

(Xi − µ0)

]2

9
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Implying

ψn − ψ0 ≡ σ2
n − σ2

0

=
1

n

n∑
i=1

[(Xi − µ0)
2 − σ2

0 ]−

[
1

n

n∑
i=1

(Xi − µ0)

]2

︸ ︷︷ ︸
⋆

And noting that ⋆ is just the square of a sample mean minus and true mean, by CLT we obtain:

⋆ = (Op(n
−1/2))2 = Op(n

−1) ≡ op(n
−1/2)

Thus, σ2
n is asymptotically linear with influence function ϕP0

(x) = [x− µ0]
2 − σ2

0 .
Suppose we knew the true mean µ0. We might instead use the finite-sample linear estimator σ2

n0 :=
1
n

∑n
i=1[Xi − µ0]

2. However,

σ2
n − σ2

n0 = [σ2
n − σ2

0 ]− [σ2
n0 − σ2

0 ]

=
1

n

n∑
i=1

[(Xi − µ0)
2 − σ2

0 ] + oP (n
−1/2)− 1

n

n∑
i=1

[(Xi − µ0)
2 − σ2

0 ]

= oP (n
−1/2)

So we don’t gain much by knowing the nuisance parameter!
p-th sample quantile: Goal is to estimate Q0(p), the p-th quantile. Let P0 have distribution function F0

and density f0. Let Qn(p) denote the p-th sample quantile. Then:

Qn(p)−Q0(p) =
1

n

n∑
i=1

[
F0(Q0(p))− 1(Xi ≤ Q0(p))

f0(Q0(p))

]
+ oP (n

−1/2)

Theorem 10 (Z-estimators are ALE (vdV 5.21)).
No nuisance: Consider estimating a summary ψ0 ∈ R of P0 that is defined as the unique solution in ψ to:

P0U(ψ) = 0

An estimating equation-based estimator, or Z-estimator, ψn is defined as the solution to the estimating
equation:

PnU(ψ) = 0

In fact, we only require that there be a near solution.

PnU(ψ) = oP (n
−1/2)

Under either of these two conditions, the Z-estimator has the form:

ψn − ψ0 =
1

n

n∑
i=1

(
− ∂

∂ψ
P0U(ψ)

∣∣∣
ψ=ψ0

)−1

U(ψ0)(Xi) + oP (n
−1/2) (3)

where ϕP0
(x) =

(
− ∂
∂ψP0U(ψ)

∣∣∣
ψ=ψ0

)−1

U(ψ0)(x) is the influence function of ψn. It is clearly P0-mean-0

because P0U(ψ0)(x) = 0. To check that it is P0-squared integrable, we require more information.

10
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Nuisance (HW 2.3): suppose now that the estimating function now depends on a nuisance parame-
ter: U(ψ, η). Suppose that ψ0 is the solution in ψ to the equation P0U(ψ, η0). Suppose an ALE is available
for η0, ηn with IF φP0

. Define ψn to be a solution or near solution in ψ to:

1

n

n∑
i=1

U(ψ, ηn) = 0

Assuming ψn is consistent for ψ0, ψn is ALE for ψ0 with influence function:

ϕP0
(x) := −

(
∂

∂ψ
P0U(ψ, η0)

∣∣∣
ψ=ψ0

)−1 [
U(ψ0, ψn)(x) +

(
∂

∂η
P0U(ψ0, η)

∣∣∣
η=η0

φP0
(x)

)]

The delta-method allows us to characterize the limiting distribution of differentiable transformations of
asymptotic linear estimators!

Theorem 11 (Delta Method (vdV 3.1)).
Suppose ψn is an estimator of ψ0 ∈ Rd s.t.,

√
n(ψn − ψ0)⇝ N(0,Σ)

If f : Rd → R is differentiable, then

f(ψn)− f(ψ0) = ⟨ψn − ψ0,∇f(ψ0)⟩+ oP (n
−1/2)

Theorem 12 (Delta Method for ALEs).
Suppose ψn ∈ Rd is an asymptotically linear estimator of ψ0 ∈ Rd, implying ψn,j is ALE for ψ0,j for all
j ∈ {1, . . . , d}. Suppose f : Rd → R is differentiable (at ψ0). Then f(ψn) is itself an asymptotically linear
estimator for f(ψ0) with influence function equal to:

ϕ̃P0
: x→ ⟨∇f(ψ0), ϕP0

(x)⟩

Where ϕP0
(x) is the influence function of ψn.

Example 4 (Goodness of fit statistics (vdV 19.23)).
Consider the Kolmogorov-Smirnov statistic:

√
n||Fn − F0||∞ ⇝ ||G||∞ by continuous mapping theorem.

One could test whether the distribution matches an assumed H0 := F0 = F ∗, construct a null 95%
uniform CI, and test whether Fn calls in the interval.

One could also test against a broader null hypothesis, such as P belongs to a certain family {Pθ : θ ∈ Θ}. It
is natural that we consider discrepancy between Pn and Pθ̂ where θ̂ is an estimator of θ. Consider the null
H0 : F0 is normal. The modified Komolgorov-Smirnov statistic for testing normality is:

sup
t

√
n

∣∣∣∣Fn(t)− Φ

(
t− X̄

S

)∣∣∣∣
11
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Here, the limit distribution is a misture of a Gaussian process and a drift term:

√
n(Pn − Pθ̂) =

√
n(Pn − Pθ)−

√
n(Pθ̂ − Pθ)

=
√
n(Pn − Pθ)−

√
n(θ̂ − θ)T Ṗθ

If P is Frechét differentiable. If θ̂n is asymptotically linear with influence function ψθ(x), then:

√
n(Pn − Pθ̂)f ⇝ GPθ

f −GPθ
ψTθ Ṗθf Uniformly over f ∈ F

√
n(Fn − Fθ̂)⇝ GPθ

f −GPθ
ψTθ Ṗθf Uniformly over f ∈ F := {1(x ≤ t)}

sup
t

√
n

∣∣∣∣Fn(t)− Φ

(
t− X̄

S

)∣∣∣∣⇝ ||GPθ
f −GPθ

ψTθ Ṗθf ||F

2.1 V/U-statistics

Many parameters of interest can be written as:

V (P ) =

∫ ∫
· · ·

∫
H(x1, . . . , xm)dP (x1) . . . dP (xm) (4)

With the function H known as the kernel. Some examples include:

1. General raw moment: V (P ) =
∫
g(x)dP (x)

2. Variance: V (P ) =
∫ ∫

1
2 (x1 − x2)

2dP (x1)dP (x2)

3. Kendall’s Tau: V (P ) = 4P (X1 < X2, Y1 < Y2)− 1 or∫ ∫
[21(x1 < x2, y1 < y2) + 21(x1 < x2, y1 < y2)− 1]P (dx1, dy1)P (dx2, dy2)

4. Cramer-von Mises GOF criterion: V (P ) =
∫
[FP (x)− F ∗

P (x)]
2F ∗(dx) for given F ∗:∫ ∫ [∫

{1(x1 ≤ u)− F ∗(u)}{1(x2 ≤ u)− F ∗(u)}F ∗(du)

]
dP (x1)dP (x2)

Definition 8 (V-statistic).
For functions written in the form of Equation 4, a natural estimator is obtained by plugging in the empirical
distribution Pn leading to a V-statistic:

Vn := V (Pn) =
1

nm

n∑
i1=1

. . .

n∑
im=1

H(Xi1 , . . . , Xim) (5)

Some examples include:

1. General raw moment: Vn = 1
n

∑n
i=1 g(Xi)

2. Variance: V (P ) = 1
2n2

∑n
i=1

∑n
j=1(Xi −Xj)

2 or Vn = 1
n

∑n
i=1(Xi − X̄n)

2

3. Kendall’s Tau:

Vn = 2×
(
1− 1

n

)
× (fraction of pairs with positive slopes)− 1

12
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4. Cramer-von Mises GOF criterion:

Vn =

∫
[Fn(x)− F ∗(x)]2F ∗(dx)

The linearization argument presented below is useful for determining the asymptotic distribution of a
V-statistic under nondegeneracy.

Theorem 13 (Linearization of V-statistic; Non-Degenerate).
V-statistics can be written in a linear form. Assume V is symmetric in its arguments. If it is not, we can
symmetrize it by computing an average when we permute the arguments. By inducting on m, we can show
that:

Vn − V0 = (Pmn − Pm0 )H

=

m∑
k=1

(
m

k

)
(Pn − P0)

kHk

Where Hk := (Pn − P0)
m−kH =

∫
. . .

∫
H(x1, . . . , xk, xk+1, . . . , xm)P0(dxk+1) . . . P0(dxm) is simply the

function when we’ve integrated out all the terms excluding the 1 through k-th terms.
Defining τ2k := Var[Hk(X1 . . . , Xk)] to be the variance of the k-variate function, and letting a := min(a :
τ2a > 0), the dominant term in the above expansion is:(

m

a

)
(Pn − P0)

aHa

If a = 1, we can rewrite the above expansion as

Vn − V0 = m(Pn − P0)H1 +

m∑
k=2

(
m

k

)
(Pn − P0)

kHk (6)

Where the remaining terms are higher orders of (Pn − P0). Thus, this expansion provides a first-order
approximation for the estimation error. Under a = 1, the asymptotic behavior is dictated by the dominant
first order term. If 0 ̸= Var0(H1(X)) =: τ21 , i.e., the distribution is non-degenerate, the dominant first-
order term is:

m(Pn − P0)H1 ≡ 1

n

n∑
i=1

m(H1(Xi)− V0)

Provided H := {x → H(x, x2, . . . , xm) : (x2, . . . , xm) ∈ Xm−1
0 } is P0-Donsker, Vn is ALE with influence

function ϕP0(x) = m(H1(x)− V0), implying

Vn − V0 =
1

n

n∑
i=1

m(H1(Xi)− V0) + oP (n
−1/2)

√
n(Vn − V0)⇝ N(0,m2τ21 )

13
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Note that Vn is typically biased for V0. Consider the case of m = 2:

n2E[Vn] = E

 n∑
i=1

n∑
j=1

H(Xi, Xj)


= E

 n∑
i̸=j

H(Xi, Xj)

+ E

[
n∑
i=1

H(Xi, Xi)

]
= n(n− 1)E[H(X1, X2)] + nE[H(X1, X1)]

= n(n− 1)V0 + nE[H(X1, X1)]

=⇒ n2(E[Vn]− V0) = n [E[H(X1, X1)]− V0]

=⇒ (E[Vn]− V0) =
1

n
[E[H(X1, X1)]− V0] ̸= 0

So Vn is biased for V0 despite the bias decaying to 0 at a 1
n rate. But to correct for the finite sample bias,

we motivate an alternative that avoids ties and leans on independent pairs of observations.

Definition 9 (U-statistics).
A U-statistic averages out H(Xi1 , . . . , Xim) over a set of unique indices, which eliminates the cases of
matching indices which introduces bias:

Un :=

(
n

m

)−1 ∑
im∈Dm,n

H(Xi1 , . . . , Xim)

where Dm,n := {im ⊂ {1, . . . , n} := (i1, . . . , i2, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}. We assume WLOG that
the kernel H is symmetric in its arguments.

Are Un and Vn asymptotically equivalent? And can we still obtain a nice linearization of the U-statistic?

Theorem 14 (Linearization of U-statistic via Hajék projection).
In order to obtain the same linearization for a U-statistic Un − V0 where:

Un :=

(
n

m

)−1 ∑
im∈Dm,n

H(Xi1 , . . . , Xim)

where Dm,n := {im ⊂ {1, . . . , n} := (i1, . . . , i2, . . . , im) : 1 ≤ i1 < . . . < im ≤ n}, we can consider a basic
case and use projection methods for the general case.

Case 1 (m=2): defining

Vn :=
1

n2

∑
i,j

H(Xi, Xj)

Un :=
1

n(n− 1)

∑
i̸=j

H(Xi, Xj)

Dn :=
1

n

n∑
i=1

H(Xi, Xi)

14
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We have

Vn =

(
1− 1

n

)
Un +

1

n
Dn

=⇒ Un − Vn =
1

n
(Un −Dn)

=⇒ n1/2(Un − Vn) = n−1/2(Un −Dn) = OP (n
−1/2) (WLLN)

Hence, Un = Vn +OP (n
−1), implying:

Un − V0 = (Vn − V0) + (Un − Vn)

= m(Pn − P0)H1 + oP (n
−1/2)

Thus, Un is ALE for V0 with IF: ϕ : x→ m[H1(x)− V0].

Case 2 (general): The idea is to find the closest approxiamtion to Un − V0 within the class of
random variables of the form

∑n
i=1 gi(Xi) for P0-square-integrable functions gi : X0 → R. Turns out for

a given mean zero function of the observations Tn := Tn(X1, . . . , Xn), the projection of Tn onto space of
random variables of the desired form is given by the Hajék projection:

T̄n :=

n∑
i=1

E0[Tn(X1, X2, . . . , Xn)|Xi]

Noting that:

E0(Un − V0|Xi) =
m

n
[H1(Xi)− V0]

Therefore, the Hajék projection of (Un − V0) onto the space of functions provides the desired linearization:

Ūn :=
1

n

n∑
i=1

m[H1(Xi)− V0]

Therefore, Un is an ALE for V0 with IF ϕ : x→ m[H1(x)− V0] and is therefore asymptotically equivalent to
Vn.

A nice property of the U-statistic is we can find its finite-sample/asymptotic variance!

Theorem 15 (Finite-sample/asymptotic variance of U-statistic).
Setting τ2k := Var0[Hk(X1, . . . , Xk)], the variance of the k-th variate function, it can be shown:

Var0[Un] =

(
n

m

)−1 m∑
k=1

(
n

m

)(
m

k

)(
n−m

m− k

)
τ2k

Under a := min{k ≥ 1 : τ2k > 0}, we have

Var0[Un] =
a!

na

(
m

a

)2

τ2a +O(n−(a+1))

implying:

naVar(Un)
n→∞−→ a!

(
m

a

)2

τ2a (7)

15
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We end this subsection with some examples of U -statistics:

Example 5 (U-statistics).
Case 1 (Sample variance):

H(x1, x2) =
1

2
(x1 − x2)

2

H1(x) = EP0 [H(x,X)] =
1

2
EP0 [(X − x)2] =

1

2

(
σ2
0 + (µ0 − x)2

)
τ21 = VarP0

(H1(X)) =
1

4

(
EP0

((X − µ0)
4)− σ4

0

)
Provided τ21 ̸= 0, we have that:

Un − V0 =
1

n

n∑
i=1

m(H1(Xi)− V0) + oP (n
−1/2)

=
1

n

n∑
i=1

[
(Xi − µ0)

2 − σ2
0

]
+ oP (n

−1/2)

=⇒ n1/2(Un − V0)⇝ N(0, 4τ21 )

Case 2 (Kendall’s Tau): let Z = (X,Y ) denote the random data unit and let FL(x, y) := P0(X < x, Y < y)
and FU (x, y) := P0(X > x, Y > y).

H(z1, z2) = 2 [1(x1 < x2, y1 < y2) + 1(x1 > x2, y1 > y2)]− 1

H1(z) = EP0
[H(z, Z)] = 2[P0(X < x, Y < y) + P0(X > x, Y > y)]− 1

τ21 = VarP0
[H1(Z)] = 4VarP0

[FL(X,Y ) + FU (X,Y )]

Provided τ21 ̸= 0, we have that:

Un − V0 =
1

n

n∑
i=1

m(H1(Xi)− V0) + oP (n
−1/2)

=
1

n

n∑
i=1

2 · (2[FL(Xi, Yi) + FU (Xi, Yi)]− 1− (4P0(X1 < X2, Y1 < Y2)− 1)) + oP (n
−1/2)

=
1

n

n∑
i=1

4 · [FL(Xi, Yi) + FU (Xi, Yi)− 2P0(X1 < X2, Y1 < Y2)] + oP (n
−1/2)

=⇒ n1/2(Un − V0)⇝ N(0, 4τ21 )

Noting that under H0 : X ⊥ Y :

V0 = 4P0(X1 < X2, Y1 < Y2)− 1 = 4[P0(X1 < X2) · P (Y1 < Y2)]− 1 = 0

FL(X,Y ) = F0(X)F0(Y ) and FU (X,Y ) = (1− F0(X))(1− F0(Y ))

τ21 = VarP0
[H1(Z)] = VarP0

[2(F0(X)F0(Y )− (1− F0(X))(1− F0(Y )))− 1]

= VarP0
[2UV − 2(1− U)(1− V )] (for U, V std unif)

=
1

9
(Law total var)

=⇒ n1/2(Un)⇝ N(0, 4/9)

16
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Case 3 (Cramer von-Mises Measure): denoting F0(x) = P0(X ≤ x), consider H0 : F0 = F ∗:

H(x1, x2) =

∫
{1(x1 ≤ u)− F ∗(u)}{1(x2 ≤ u)− F ∗(u)}dF ∗(u)

H1(x) = E0[H(x,X)] =

∫
{F0 ∗ (u)− F ∗(u)}{1(x2 ≤ u)− F ∗(u)}dF ∗(u)

H0= 0

τ21
H0= 0

Thus, the U-statistic has degenerate order-1 asymptotic distribution. Yet τ22 = 1/90 suggesting. This
motivates the idea of whether:

na/2[Un − V0] = n[Un − V0]⇝ Y

Defining Vn =
∫
[Fn(u)− F ∗(u)]2dF ∗(u) ≡

∫
[Fn(u)− F0(u)]

2dF0(u) under H0:

nVn =

∫
[n1/2(Fn(u)− F0(u))]

2dF0(u)

=

∫ 1

0

[n1/2(Pn − P0)1(x ≤ u)]2dF0(u)

=

∫ 1

0

[G(u)]2du

Which holds by Donsker Theorem and Continuous mapping theorem.
What can we say about the U-statistic? Recalling that:

Vn =

(
1− 1

n

)
Un +

1

n
Dn

Where Dn := 1
n

∑n
i=1H(Xi, Xi), we can obtain that Dn

p−→ EP0
[H(X1, X1)] =

1
6 . Thus, by Slutsky’s

Lemma under H0 with V0 = 0:

n(Un − V0) =
nVn −Dn

1− 1
n

=
n(Vn − V0)−Dn

1− 1
n

n→∞−→ n(Vn − V0)−Dn

1
=

∫ 1

0

[G(u)]2du− 1

6

We previously illustrated 1-degenerate U/V-statistics were those with first order behavior (in Pn − P0)
that equaled 0 by VarP0(H1) := τ2 = 0. An example of this is estimating the Cramer von-Mises measure.
What can we conclude about the asymptotic behavior of such estimators?

Theorem 16 (Asymptotic Distribution of a 1-degenerate U/V-statistic).
Suppose H is a symmetric kernel and m ≥ 2. Suppose the kernel is 1-degenerate. and τ22 > τ21 = 0. Then
the U -statistic has asymptotic distribution:

n(Un − V0)⇝
∞∑
k=1

λj(Z
2
j − 1)

Where Zj
iid∼ N(0, 1), Z2

j ∼ χ2
1, and Z2

j − 1 is mean-centered chi-square, and λj are the eigenvalues of a
certain linear operator.

17
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Under appropriate regularity conditions we also get:

n(Vn − V0)⇝
∞∑
k=1

λj(Z
2
j )

2.2 Functional Delta Method

We have seen that when an estimator ψn of ψ0 is writable as a differentiable function h of another
estimator θn of θ0, we can use the delta method to study the asymptotic behavior of ψn based on the
behavior of θn.

ψn − ψ0 = h(θn)− h(θ0) = h′(θ0)(θn − θ0) + remh(θn, θ0)

What if we wish to study a fixed functional on the empirical distribution, ψn := Ψ(Fn). Is there an analogous
representation to the delta method/Taylor expansion?

Step one to assessing the asymptotic behavior of a plug-in estimator ψ(Fn) is ensuring consistency. This
requires a continuity condition on the functional, and consistency follows by a continuous mapping theorem
argument.

Definition 10 (ρ-continuity).
Let P denote the statistical model, i.e., the set of all CDFs. Assume the set is convex. Let ρ denote a
norm on P. A functional ψ : P → R is said to be ρ−continuous at F̃ ∈ P if for all deterministic sequences
{F̃k}∞k=1 ⊂ P s.t.

ρ(F̃k − F̃ ) −→ 0

Implies

ψ(F̃k) −→ ψ(F̃ )

This motivates a continuous mapping theorem.

Theorem 17 (Continuous Mapping Theorem).

If ψ is a ρ−continuous functional at F0 and ρ(Fn − F0)
p→ 0, then:

ψ(Fn)
p→ ψ(F0)

The next step is demonstrating the asymptotic linearity of the functional, which requires a Taylor ex-
pansion. What notion of differentiability do we need for the functional?

Definition 11 (Gâteaux Differentiability).
Suppose P is convex, meaning for F1, F2 ∈ P → αF1 + (1− α)F2 ∈ P ∀α ∈ (0, 1).
By noting Fn = F0 +

1√
n

√
n(Fn − F0), we note that

√
n(Fn − F0) ∈ Q(F0) := {c(F − F0) : c ∈ R, F ∈ P}.

18
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Suggests studying ϵ ∈ R and h ∈ Q(F0).
The Gâteaux derivative of Ψ at F ∈ P in the direction of h ∈ Q(F ) is given by:

Ψ̇(F ;h) = lim
ϵ→0

[
Ψ(F + ϵh)−Ψ(F )

ϵ

]
=

d

dϵ
Ψ(F + ϵh)

∣∣∣
ϵ=0

A functional Ψ is Gâteaux differentiable at F ∈ P if the derivative exists for all directions h ∈ Q(F ) and
if h→ Ψ̇(F ;h) is a linear functional.

However, as we will see, Gâteaux differentiability is insufficient to give us the asymptotic linearity of
Ψ(Fn). Define the remainder of the approximation to be

RF0,ϵ :=
Ψ(F0 + ϵh)−Ψ(F )

ϵ
− Ψ̇(F0;h)

Setting ϵ = ϵn = n−1/2 and h = hn =
√
n(Fn − F0), we have:

Ψ(Fn)−Ψ(F0) = n−1/2ψ̇(F0;hn) + n−1/2

(
Ψ(F0 + n−1/2

√
n(Fn − F0))−Ψ(F0)

n−1/2
− ψ̇(F0;hn)

)
= ψ̇(F0;Fn − F0) + n−1/2RF0,ϵn(hn)

How can we show that RF0,ϵn(hn) = oP (1)?
Turns out, Gâteaux differentiability only implies that RF0,ϵ(h) → 0 for some fixed direction h ∈ Q(F ).

However, the remainder term above depends on a random direction. We want this result to hold uniformly
over all directions. Thus, we require a stronger form of functional differentiability.

Definition 12 (Hadamard Differentiablity).
Suppose that the functional Ψ : P → R has differential Ψ̇(F, h) at F ∈ P and in direction h ∈ Q(F ).
Suppose the remainder term above tends to zero uniformly over directions h ∈ H such that H ∈ H :=
{all compact subsets of {Q(F ), ρ}}:

lim
ϵ→0

[
sup
h∈H

|RF0,ϵ(h)|
]
= 0 for each H ∈ H

Theorem 18 (Negligibility of the remainder under Hadamard differentiability).
The remainder term Rn := RF0,ϵn(hn) is oP (1) if Ψ is Hadamard differentiable at F0 relative to ρ = || · ||∞.

Theorem 19 (Functional Delta Method).
Suppose Ψ is Hadamard differentiable at F0 relative to ρ : (h1, h2) → sup

x
|h1(x) − h2(x)| ≡ || · ||∞. Letting

ϵn = n−1/2 and Hn :=
√
n(Fn − F0), it holds that RF0,ϵn(Hn) = oP (1), implying:

Ψ(Fn)−Ψ(F0) = Ψ̇(F0;Fn − F0) + op(n
−1/2)

=
1

n

n∑
i=1

Ψ̇(F0;1(Xi ≤ ·)− F0) + op(n
−1/2)

(8)

To ascertain whether Ψ(Fn) is asymptotically linear, we must check whether the proposed IF is P0 mean
zero and finite squared integrable. Since Ψ̇ is linear, we know it’s mean 0.
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The following is a useful theorem that allows us to switch the order of integration.

Theorem 20 (Integration by Parts).
Let g : [a, b] → R and h : [a, b] → R be cadlag (continuous from right with limits on left) functions. Note:
CDFs are cadlag with bounded variation. It holds that:∫

(a,b]

g(u)dh(u) +

∫
(a,b]

h(u−)dg(u) = g(b)h(b)− g(a)h(a)

where h(u−) is the left hand limits. If at least one of the two functions is continuous∫
(a,b]

g(u)dh(u) +

∫
(a,b]

h(u)dg(u) = g(b)h(b)− g(a)h(a)

20



Ethan Ashby STAT583 Notes Spring 2023

3 Efficiency Theory

3.1 Parametric Efficiency Theory

Suppose a statistical model M = {Pθ : θ ∈ Θ} with Θ ⊂ R is a regular parametric model and all members
of M are absolutely continuous wrt Lesbegue measure (i.e., µ(A) = 0 =⇒ Pθ(A) = 0 for A ∈ B).

Suppose we observed X1, . . . , Xn
iid∼ Pθ0 with θ0 ∈ Θ are are interested in estimating τ0 := τ(θ0).

The Fisher information for θ is defined as

I(θ) := Pθ

(
∂

∂θ
log pθ

)2

which measures the curvature of the log-likelihood. The curvier, the more information there is about a
parameter.

Can we characterize the optimal efficiency for estimators of a target of interest, τ0? Hájek’s convolu-
tion theorem gives us results for certain classes of models (sufficiently smooth, QMD models) and certain
estimators (regular estimators). We first begin with a definition of regular estimators and QMD.

Definition 13 (QMD).
A statistical model is sufficiently smooth, quadratic mean differentiable, at θ if there exists a function ℓ̇θ s.t.:

sup
h∈Rd:||h||=1

∫ [√
pθ+ϵh(x)−

√
pθ(x)

ϵ
− 1

2
hT ℓ̇θ(x)

√
pθ(x)

]2

dµ(x)
ϵ→0−→ 0

QMD-ness ensures that the score function has mean zero (Pθ ℓ̇ = 0) and the Fisher Information exists.

Definition 14 (Regular Estimator).
An estimator τn of τ0 is regular if ∀h ∈ R, it holds that:

√
n

(
τn − τ

(
θ0 +

h√
n

))
⇝ Z

Where Z does not depend on h. Essentially, regular estimators have limiting distributions that are stable
uniformly under small fluctuations about θ0.

Theorem 21 (Hájek’s Convolution Theorem).
If (a) the statistical model M is sufficiently smooth (Quadratic mean differentiable), (b) the information is
nonzero, I(θ0) > 0, and (c) τn is a regular estimator of τ0 with n−1/2(τn − τ0)⇝ Z.

There exist two independent variables Z0 and ∆0 s.t. Z
d
= Z0 +∆0 with Z0 ∼ N(0, v0) where

v0 = v0(M) :=

(
∂

∂θ
τ(θ)

∣∣∣
θ=θ0

)2
1

I(θ0)

A simple corollary is that any regular estimator τn of τ0 has asymptotic variance of
√
n(τn − τ0) no

smaller than v0.
A regular estimator achieving this bound is said to be efficient.
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3.2 Efficiency in more general models

Suppose that X1, . . . , Xn
iid∼ P0 ∈M and consider the functional ψ :M → R.

Our goal is to estimate ψ0 := ψ(P0) from the observed data. What is the best variance we can achieve
when M is statistical model indexed by an infinite dimensional parameter?

Guiding principle: estimation of ψ0 inM should be at least as hard as estimating it in any (parametric)
submodel M1 ⊂M containing P0.

LetH(P0) denote an index set of all smooth (QMD) one-dimensional parametric submodels ofM centered
at P0. In other words, for each model in the index set, h ∈ H(P0), there exists a δ > 0 s.t.

1. Submodels in M : Pθ,h ∈M for all θ ∈ [0, δ)

2. P0 is origin: Pθ,h = P0 when θ = 0

3. QMD at origin: Mh = {Pθ,h : θ ∈ [0, δ)} is QMD at θ = 0.

A regular estimator in an infinite dimensional model is regular with respect to all parametric submodels
(regular relative to Mh for all h ∈ H(P0)).

Our objective is to find the lower bound on the variance of the limiting distribution of a regular estimator
in our model M , v∗0(M).

Definition 15 (Generalized Cramer-Rao Lower Bound).
It is no easier to estimate ψ0 in an infinite dimensional model M , than over all possible submodels Mh.

The variance of any regular estimator in the infinite dimensional model, v∗0(M), can be lower bounded
by the variance in any parametric submodel. To achieve the tightest lower bound, we appeal to the least
favorable parametric submodel :

v∗0(M) ≥ sup
h∈H(P0)

v0(Mh)

= sup
h∈H(P0)

(
∂
∂θψ(Pθ,h)

∣∣∣
θ=0

)2

IMh
(0)

This inequality is known as the Generalized Cramer Rao Lower Bound. Where

IMh
(0) := Pθ,h

(
∂

∂θ
log pθ,h

)2 ∣∣∣
θ=0

≡ P0g
2
h

Where gh is the score. Thus, the Fisher information in the least favorable submodel depends on h completely
through the score.

3.2.1 Outline and Suppositions

We saw in the definition of the generalized Cramer-Rao Lower Bound that the fisher information IMh
(0)

only depends on the direction h, i.e. the choice of QMD submodels, through the score gh.
Under pathwise differentiability condition on ψ, we have that the numerator of the GCRLB also

depends on h through the score gh. Specifically, there exists a P0-mean zero square integrable function
D(P0) : X → R, the gradient, s.t. for all h ∈ H(P0)

∂

∂θ
ψ(Pθ,h)

∣∣∣
θ=0

= P0 [D(P0)gh]
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If this holds, the GCRLB becomes

v∗0(M) ≥ sup
h∈H(P0)

(
∂
∂θψ(Pθ,h)

∣∣∣
θ=0

)2

IMh
(0)

= sup
g∈G(P0)

(P0[D(P0)g])
2

P0(g2)

Where g is a score and G(P0) := {gh : h ∈ H(P0)} is the collection of scores of all QMD submodels
centered at P0, i.e., tangent set of M at P0

When does this bound have a closed form? If we assume that g = cD(P0) for some c ∈ R, i.e., that
cD(P0) ∈ G(P0), then

v∗0(M) ≥ sup
g∈G(P0)

(P0[D(P0)g])
2

P0(g2)
= P0(D(P0)

2)

In this case, D(P0) is referred to as the canonical gradient/efficient influence function.

3.2.2 Pathwise Differentiability

We focus on the condition required to ensure that the derivative of the functional ψ in the GCRLB
numerator is well defined. Over a parametric model (single path), usual differentiability of real-valued
functions suffices. Can we generalize this to define derivatives over all smooth parametric paths?

Definition 16 (Pathwise differentiability).
A parameter ψ is pathwise differentiable (at P0 relative to M) if for all h ∈ H(P0) (i.e., collection of
QMD submodels) there exists a P0-mean zero function D(P0) known as the gradient such that

∂

∂θ
ψ(Pθ,h)

∣∣∣
θ=0

= P0[D(P0)gh]

Note that pathwise differentiability connects the derivative of the functional to the score under the submodel.

Now we present an example with a nice choice of QMD submodel.

Example 6 (Example gradient of generalized moment functional).
Suppose M is a nonparametric model. Consider the generalized moment functional ψ = Pf where f is a
fixed function s.t. Pf2 <∞. We will consider various choices of h ∈ H(P0), 1-dimensional QMD parametric
submodels that reduce to P0 when the parameter θ = 0.

Submodel 1: Consider a submodel with bounded score g : X → R that takes the form

pθ(x) = [1 + θg(x)]p0(x)

Note that our goal is to study the derivative of ψ(Pθ) = Pθf over this new perturbed distribution.

ψ(Pθ) =

∫
f(x)pθ(x)dµ(x)

=

∫
f(x)p0(x)dµ(x) + θ

∫
f(x)g(x)p0(x)dµ(x)

= ψ(P0) + θP0[fg]
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So the derivative of ψ(Pθ) evaluated at θ = 0 over this choice of model h is:

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

= P0[fg]

≡ P0 [(f − P0(f)) g] (Bc P0(f) is constant and g is P0-mean zero)

Note that f − P0(f) = D(P0) is a gradient because it is P0-mean zero.
Submodel 2: Consider a different submodel also with bounded score g : X → R that takes the form

pθ(x) =
exp(θg(x))p0(x)

cg(θ)

where cg(θ) is a normalizing constant. Note that [cg(0)]
−1 = 1 implying that d

dθ log cg(θ)
∣∣∣
θ=0

= θ
cg(0)

∣∣∣
θ=0

= 0.

Thus,

d

dθ
log pθ(x)

∣∣∣
θ=0

=
d

dθ
(θg(x) + log p0(x)− log cg(θ))

∣∣∣
θ=0

= g(x)

Now we inspect the form of the functional

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

=
∂

∂θ

∫
f(x)pθ(x)dµ(x)

∣∣∣
θ=0

=
∂

∂θ

∫
f(x) exp(log pθ(x))dµ(x)

∣∣∣
θ=0

=

∫
f(x)

[
∂

∂θ
log pθ(x))

∣∣∣
θ=0

]
︸ ︷︷ ︸

g(x)

exp [log p0(x)]︸ ︷︷ ︸
p0(x)

dµ(x) (Move deriv inside & chain rule)

= P0[fg]

= P0[(f − P0(f))g]

Where D(P0) = f − P0(f) is the gradient of ψ at P0 relative to M .

For a pathwise differentiable parameter, does a gradient always exist? Yes, according to the Riez Repre-
sentation Theorem.

Theorem 22 (Riez Representation Theorem).
If ψ : H → R is a bounded linear functional, there exists a unique element h0 ∈ H such that

ψ(h) = ⟨h, h0⟩ ∀h ∈ H

3.2.3 Tangent Sets, Tangent Spaces, Gradients

Next, we turn our focus to under what conditions we have that the score g = cD(P0) for some c ∈ R,
or under what conditions D(P0) ∈ G(P0), i.e., the tangent set or the collection of scores for all the QMD
submodels.

We formalize idea of indexing submodels by their scores at θ = 0 to describe the set of possible “directions”
we can perturb P0 while staying in our model M via the tangent set and tangent space.
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Definition 17 (Tangent Set, Tangent Space, Locally nonparametric model).

The tangent set of M at P0, denoted G(P0) = {gh : h ∈ H(P0)} is the collection of scores of all QMD
submodels centered at θ = 0.

The tangent space, denoted TM (P ) corresponds to the L2(P )-closure of the linear span of the tangent
set.

In most cases, the two are equivalent.

In an unrestricted (locally) nonparametric model M , for each P ∈ M , TM (P ) = L2
0(P ) which is

infinite dimensional.

A parametric model has a finite dimensional TM (P ) for each P ∈ M . A semiparametric model has
infinite dimensional TM (P ) for each P ∈M yet does not equal L2

0(P ).

Shown below are a few examples of deriving forms of tangent set. We also assess whether the gradient
lies in the tangent set.

Example 7 (Tangent set for nonparametric model, GCRLB form).
We claimed above that G(P0) = L2

0(P0) := {g ∈ L2(P0) : P0g = 0}. To show this, we pursue mutual
containment. Fix a given g ∈ L2

0(P0) and define the path

pθ,g(x) := [1 + θg(x)]p0(x)

The score is equal to

d

dθ
log pθ,g(x)

∣∣∣
θ=0

=
d

dθ
log[1 + θg(x)] + log p0(x)

∣∣∣
θ=0

= g(x)

Hence, an element of g ∈ L2
0(P0) is also in the tangent set G(P0). Hence L2

0(P0) ⊆ G(P0).
However, all scores in QMD submodels must be P0-mean 0 and finite variance. Therefore G(P0) ⊆ L2

0(P0).
Therefore, G(P0) = L2

0(P0) in a nonparametric model.

Does the gradient lie in the tangent set, D(P0) ∈ G(P0). If M is nonparametric and ψ is pathwise
differentiable, the gradient D(P0) is a P0-mean-zero and squared-integrable function. Then by definition,
D(P0) ∈ L2

0(P0) = G(P0).

Thus, in nonparametric models M , for pathwise differentiable parameters, the GCRLB is

v∗0(M) ≥ P0(D(P0)
2)

Example 8 (Derive form of tangent set for parametric model).
Suppose a parametric model indexed by a finite-dimensional parameter: M = {Pβ : β ∈ Rq}. Let P0 = Pβ0

for some β0.
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We will show that the tangent set G(P0) is equal to

G̃(P0) := {x→ uT s0(x) : u ∈ Rq}

and s0 is the score for β at β0. Note this is a linear span in Rq, implying the tangent set is finite dimensional.
We will show the result via mutual containment.

(G̃(P0) ⊆ G(P0)): Fix a u ∈ Rq. We will show there exists a submodel Mu := {Pβ(θ) : θ ∈ [0, δ)} ⊂ M such
that β(0) = β0 and has score x→ uT s0(x) for θ at θ = 0.
Let β(θ) := β0 + θu denote a submodel. Under regularity conditions (Lemma 7.6 in vdV), we can think
about the score as

∂

∂θ
log pβ(θ)(x)

∣∣∣
θ=0

=

[
∂

∂θ
β(θ)

∣∣
θ=0

] [
∇β log pβ(x)

∣∣
β=β0

]
= uT s0(x)

Hence we’ve exhibited a submodel of M with score uT s0(x). Since u ∈ Rq was arbitrary, we have that
G̃(P0) ⊆ G(P0).

(G(P0) ⊆ G̃(P0)): Consider a generic submodel of M , {Pβ(θ) : θ ∈ Rq} with β(0) = β0 and with
score of g at θ = 0.
Under regularity conditions g(x) = ∂

∂θ log pβ(θ)(x) and assuming β(θ) is differentiable at θ = 0, by chain
rule we have

g(x) =

(
∂

∂θ
β(θ)

∣∣
θ=0

)(
∇β log pβ(θ)(x)

∣∣
β=β0

)
Define the first term as uT . The second term is s0(x) byt definition. Hence, for any submodel of M , we
showed that if g ∈ G(P0), then g ∈ G̃(P0).
By mutual containment, G(P0) = G̃(P0).

Does the gradient lie in the tangent set, D(P0) ∈ G(P0). Not in this case!
Consider estimating the generalized moment ψ(P ) = Pf and suppose M = {Pθ = N(θ, 1) : θ ∈ R}. The
score for θ at θ0 is s0(x) = x− θ0.
By the above, the tangent set for the parametric model is

G(P0) = {x→ c(x− θ0) : c ∈ R}

We previously showed that the gradient D(P0) : x→ f − P0f .
Can we find a c ∈ R s.t. cD(P0) ∈ G(P0)?

1. In general we cannot. Consider f(x) = x2. We can never scale a quadratic (form of D(P0)) to look
like a linear function (the tangent set G(P0)).

2. If f(x) = x is the identity, then yes! Then D(P0) = x− θ0. This is because when f = x, the functional
Pf corresponds to θ in the model.

This raises a challenge. To obtain a closed form for the GCRLB, we require that cD(P0) ∈ G(P0).
This is always true for nonparametric models, but is not always true for semiparametric and parametric
models. How can we move forward when we can’t access the variance lower bound? As explained in the next
subsection, we replace the gradient D(P0) by D ∗ (P0), its projection onto the linear span of the tangent set,
the tangent space.
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3.2.4 Projections onto Hilbert Spaces

We briefly review the concept of a Hilbert Space.

Definition 18 (Hilbert Space, L2(P ), Orthogonality, Projection).

A real-valued Hilbert space, H, is a vector space (closed under addition and scalar multiplication)
equipped with an inner product ⟨·, ·⟩ (satisyfing positive definiteness, symmetry, and linearity) and is
complete (every Cauchy seq has limit) relative to the norm ||h|| := ⟨h, h⟩1/2.

Consider the Hilbert Space L2(P ) is the collection of functions defined on the support of P ∈ M such

that Pf2 <∞. The inner product in this case is ⟨f1, f2⟩ := P (f1f2). The norm is ||f ||L2(P ) :=
√
Pf2. We’ll

be interested in two closed subspaces of L2(P ).

1. L2
0(P ) = {f ∈ L2(P ) : Pf = 0}: the tangent set in a nonparametric model.

2. TM (P ): the tangent space, or the L2(P )-closure of the linear span of the tangent set.

The orthogonal complement H⊥
0 of a subspace H0 ⊂ H is defined as:

H⊥ := {h ∈ H : ⟨h, h0⟩ = 0 ∀ h0 ∈ H0}

The projection of h1 ∈ H onto a closed subspace H0 is defined as:

ΠH0
(h1) := argmin

h∈H0

||h− h1||

The projection ΠH0(h1) is the unique element of h0 ∈ H0 such that h0 ∈ H0 and h1 − h0 ∈ H⊥
0 (residual

in orthogonal complement).

We offer an equivalent (by Reiz Representation Theorem) definition of pathwise differentiability that
exploits the fact that L2(P ) is a Hilbert space. It also offers a path forward to examine the lower bound on
the variance when the gradient D(P0) /∈ TM (P0).

Definition 19 (Equivalent Def of Pathwise differentiability).
A parameter ψ : M → R is pathwise differentiable at P0 iff there exists a continuous linear map ψ̇P0 :
L2
0(P0) → R s.t. for all g ∈ TM (P0)

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

= ψ̇P0(g)

This definition is equivalent to the original definition that requires the existence of a gradient D(P0) ∈ L2
0(P0)

s.t. for all h ∈ H(P0),

∂

∂θ
ψ(Pθ,h)

∣∣∣
θ=0

= ⟨D(P0), gh⟩ = P0[D(P0)gh]

Definition 20 (GCRLB in Hilbert Space, Canonical Gradient).
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Let’s reconsider the GCRLB in the Hilbert space.

v∗0(M) ≥ sup
g∈TM (P0)

[⟨D(P0), g⟩]2

P0g2

When D(P0) is not in the tangent space TM (P0), we can’t obtain an explicit form of the GCRLB by Cauchy-
Schwarz. Instead, we consider the projection of D(P0) onto the tangent space:

D∗(P0) = ΠTM (P0)(D(P0))

Then we can write the GCRLB as

v∗0(M) ≥ sup
g∈TM (P0)

[⟨D(P0), g⟩]2

P0g2

= sup
g∈TM (P0)

[
����������: 0

⟨D(P0)−D∗(P0), g⟩+ ⟨D∗(P0), g⟩]2

P0g2

= P0(D
∗(P0)

2)

Where cancellation of the first term holds because D(P0)−D∗(P0) ⊥ TM (P0) by orthogonality.
Some properties of D∗(P0)

1. D∗(P0) is a gradient: since ⟨D(P0), g⟩ = ⟨D∗(P0), g⟩ for all g ∈ TM (P0)

2. D∗(P0) is the unique gradient that belongs to TM (P0)

We term D∗(P0) the canonical gradient or efficient influence function.

The following strategy gives us guidance on how to calculate a gradient for a particular model.

Strategy 1 (Identifying a gradient).
For a given pathwise differentiable parameter ψ :M → R, how do we identify a gradient?

1. Take a QMD parametric submodel {Pθ : θ ∈ [0, δ)} ⊆ M with Pθ=0 = P0 and score g ∈ TM (P0).
Choose nice submodels like the linear submodel

pθ = [1 + θg(x)]p0

2. Compute ∂
∂θψ(Pθ)

∣∣∣
θ=0

analytically over your chosen submodel.

3. Write ∂
∂θψ(Pθ)

∣∣∣
θ=0

as P0[D̃(P0)g] for some D̃(P0) ∈ L2(P0). Note: D̃(P0) can’t depend on choice of g.

4. Recenter D̃(P0) so it is mean 0, just by subtracting its mean:

D(P0) : x→ D̃(P0)(x)− P0D̃(P0)

The following theorem ensures we have a nice submodel to work with in step 1 of the strategy above.
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Theorem 23 (Gradients in nested models).
Let M1 ⊆ M2 be two models. Suppose P ∈ M1 and ψ : M2 → R is pathwise differentiable at P relative to
M2. Then ψ is also pathwise differentiable at P relative to M1 and

GradM2(P ) ⊆ GradM1(P )

Where GradM (P ) = {D0(P ) + q(P ) : q(P ) ∈ TM (P )⊥} is the collection of all gradients of the model TM .
This means it is okay to pick a bigger model, find a gradient in the bigger model, and applying it to the
smaller model, because the gradients of the smaller model are larger than the bigger model.

The Theorem above suggests that we perform the 4 step strategy above by extending to the non-
parametric model. Then start with easy submodel of the nonparametric model, find a gradient, and that
gradient is guaranteed to be a gradient in the smaller model.

Example 9 (Gradient of Average Density Parameter).
Consider the average density functional, ψ :M → R

ψ(P ) =

∫
p(u)2du

Step 1: consider the nonparametric model and define the linear submodel

pθ(x) = [1 + θg(x)]p0(x)

Step 2: analytically compute the derivative over the path along the chosen submodel. Step 3: write in terms
of D̃(u) uncentered.

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

=
∂

∂θ

∫
[1 + θg(u)]2p0(u)

2du
∣∣∣
θ=0

= 2

∫
g(u)p0(u)

2du

=

∫
2p0(u)︸ ︷︷ ︸
D̃(u)

g(u)dP0

Step 4: mean-center D̃(u)

∂

∂θ
ψ(Pθ)

∣∣∣
θ=0

=

∫
2p0(u)g(u)dP0

=

∫
2 (p0(u)− ψ(P0))︸ ︷︷ ︸

D(P0)

g(u)dP0

Thus, D(P0) = 2 (p0(u)− ψ(P0)) is the gradient.

3.2.5 Relationships between gradients and influence functions

Definition 21 (RAL Estimators, Gradients ⇐⇒ Influence Functions).
Estimators that are both regular (satisyfing Def 14) and asymptotically linear (satisyfing Def 7) are called
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regular asymptotic linear (RAL) estimators.
Key result 1: influence functions are gradients. If ψn is a asymptotic linear estimator of ψ(P0) with
influence function ϕP0 , then TFAE

1. ψ is pathwise differentiable at P0 with gradient ϕP0
.

2. ψn is regular at P0

This result implies that RAL estimators exist only for pathwise differentiable parameters. Studying the
pathwise derivative for our parameter is also critical.
Key result 2: gradients are influence functions. If D(P0) is a gradient, under regularity conditions, TFAE

1. An asymptotically linear estimator with influence function D(P0) exists.

2. It’s possible to estimate ψ(P0) consistently.

This result implies that computing the IF of a known RAL estimator can be a way to find a gradient.
This result also implies if ψ is pathwise differentiable and can be estimated consistently, there exists an ALE
meaning we can estimate it root-n consistently. (We explore constructing efficient estimators in next section)
And if we can’t estimate a parameter root-n consistently, it’s probably not pathwise differentiable.

The link between influence functions and gradients helps establish efficiency bounds in arbitrary models
and helps us characterize efficient estimators.

Definition 22 (Efficient Estimator, EIF).
By the key result 2 above, under conditions, there exists an asymptotic linear estimator ψn with influence
function equal to the canonical gradient, D∗(P0).
By key result 1, we have that ψn is regular. By CLT we have that

√
n(ψn − ψ0) has asymptotic variance

P0[D
∗(P0)

2].
Recalling v∗0(M) is the smallest variance of any regular estimator in the model M , and that ψn is a specific
regular estimator.

v∗0(M) ≤ P0[D
∗(P0)

2]

However we also showed in Def 20 that the GCRLB reduces to

v∗0(M) ≥ P0[D
∗(P0)

2]

Thus, v∗0(M) = P0(D
∗(P0)

2), meaning our estimator ψn achieves the lowest asymptotic variance of any
regular estimator of ψ0. We term this estimator, efficient.
We term the D∗(P0) the efficient influence function.

Example 10 (Semiparametric Efficiency Examples).
Example 1 (General moment under independence): Suppose (Y, Z) ∼ P0 ∈ M where M is the
collection of all bivariate distributions where Y and Z are independent. Suppose we wish to estimate
ψ0 := P0f for fixed bivariate function f .

1. Start with a gradient (influence function) in the nonparametric model: D(P ) := f − P (f).

2. Derive the form of the tangent space of the semiparametric model TM (P ). Recall that a model for
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PY,Z ∈M can be written as PY,Z = PY PZ implying

M =MY ⊗MZ

Because Y and Z are independent of each other. Thus, the tangent space can be written as

TM (P ) = TMY
(P ) + TMZ

(P )

= L2
0(PY ) + L2

0(PZ)

3. Project the gradient on the nonparametric model onto the tangent space of the model with indepen-
dence condition to get the EIF

ΠTM (P )(D(P )) = ΠTMY
(P )(D(P )) + ΠTMZ

(P )(D(P ))

= EP [f(Y,Z)|Z = z]− ψ(P ) + EP [f(Y,Z)|Y = y]− ψ(P )

= EP [f(Y, z)] + EP [f(y, Z)]− 2ψ(P ) = D∗(P )

This is the EIF of the ψ relative to M .

Consider estimating the bivariate CDF under joint independence, F0(y0, z0) = P01(Yi ≤ y0, Zi ≤ z0). Let’s
postulate a simple plug-in estimator under joint independence:

ψn = Pn[1(Y ≤ y0, Z ≤ z0)]

= Pn[1(Y ≤ y0)]Pn[1(Z ≤ z0)]

= Fn(y0)Fn(z0)

Let’s consider correcting for possible bias via the one-step estimation method. The EIF for this parameter
is

D∗(P ) = 1(Zi ≤ z0)FP (y0)− ψ(P ) + 1(Yi ≤ y0)FP (z0)− ψ(P )

Now let’s find the efficient one-step estimator

ψos = ψn − Pn[D
∗(Pn)]

= ψn − Pn [1(Zi ≤ z0)FP (y0)− ψ(Pn) + 1(Yi ≤ y0)FP (z0)− ψ(Pn)]︸ ︷︷ ︸
=0

= ψn

This tells us that the one step and plug-in estimators are equal, therefore the plug-in estimator is efficient.
Example 2 (Variation Independence: suppose P = Qg with ψ : M → R depending on P through Q
alone and that M =MQ ⊗Mg, i.e., Q and g are variationally independent.

1. Figure out the form of the tangent space:

TM (P ) = TMQ
(P ) + TMg

(P )

2. Shrinking TMg
(P ) by putting more restrictions on g generally enlarges T⊥

M (P ), increasing the number
of gradients.

3. However, the EIF is not affected by shrinking TMg
(P ) because it lies in TMQ

(P ).

Example 3 (Estimating mean of MAR outcome): suppose Xi = (Yi,∆i,Wi)
iid∼ P0. Consider the

estimator:

ψn :=
1

n

n∑
k=1

1
n

∑n
i=1 Yi1(∆i = 1,Wi =Wk)

1
n

∑n
i=1 1(∆i = 1,Wi =Wk)
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which is an estimator of ψ0 := E(E(Y |∆ = 1,W )).
We can write PX = PY |∆,WP∆|WPW . Noting that ψ0 does not depend on P∆|W which is an orthogonal
nuisance parameter. Thus, restrictions on the model P∆|W do not change the EIF.
Consider the nonparametric model M0 which restricts P∆|W = g0 to be known. In this model, use the IPW
estimator to estimate ψ = E(Y ):

1

n

n∑
i=1

Yi∆i

g0(Wi)

Which has influence function

D(P )(x) =
yδ

g0(w)
− ψ0(P )

Now we project the gradient from the nonparametric model into the tangent space of the model M

TM (P ) = TMY |∆,W
(P ) + TMW

(P )

Which produces

Π(D(P )|TM (P ))(x) =
δ

P (∆ = 1|W = w)
[y − E(Y |∆ = 1,W = w)] + E(Y |∆ = 1,W = w)− ψ0(P )

is the EIF.
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4 Constructing Efficient Estimators

4.1 Undersmoothing

Consider parameters that rely on “local” information such that plug-in estimators can’t be well-defined
(e.g., densities, regression functions). For example consider the average density parameter

ψ(P ) =

∫
p(x)2dx

The parameter is pathwise differentiable, so there should exist an ALE. A plug-in estimator of this parameter
is undefined because we can’t define an empirical density. Thus, we must often use smoothing tools. We
could plug-in a different estimator other than the empirical estimator.
Consider a kernel density estimator (KDE) of p:

pn,h(x) =
1

n

n∑
i=1

1

h
K

(
Xi − x

h

)
Assume that K is a symmetric kernel and p0 is sufficiently smooth such that the KDE achieves optimal rate
in terms of MSE and MISE.
The plug-in estimator based on the KDE is

ψn = ψ(Pn,hn) =

∫
(pn,hn)

2dx

Theory tells us that the optimal bandwidth for estimating the density using a KDE is h = n−1/5. However,
this bandwidth is not optimal for estimation of ψ0, as we’ll see that bias inherited from estimating the
intermediate object, the nuisance p0, is too large to yield an ALE.
To see this, consider the bias of ψn

bias(ψn) = E[ψn − ψ0]

= E
[∫

(pn,hn
)2dx−

∫
(p0)

2dx

]
= E

[
2

∫
p0(x) (pn,hn(x)− p0(x)) dx

]
+ E

[∫
(pn,hn(x)− p0)

2dx

]
= 2

∫
p0(x)E [pn,hn

(x)− p0(x)]︸ ︷︷ ︸
Bias pn,hn

dx+

∫
E
[
(pn,hn(x)− p0)

2
]︸ ︷︷ ︸

MSE pn,hn

dx

Recalling that MSE = bias2 + variance, and Bias(pn,hn) = O(h2n) and Variance(pn,hn) = O((nhn)
−1), then

bias(ψn) = O
(
h2n +

1

nhn

)
Where we’ve omitted the higher order bias2 term. If we plug in the optimal bandwidth for estimating p0,
hn = n−1/5, we see that

bias(ψn) = O(n−2/5)

However, an ALE implies

n1/2bias(ψn)
n→∞−→ 0

However, for our estimator above

n1/2bias(ψn) = O(n1/10) → ∞
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We must consider a new bandwidth to achieve asymptotic linearity. Turns out th optimal choice of band-
width is hn = n−1/3. Choosing the smaller bandwidth means we allow our estimate of the density to be
undersmoothed, i.e. more wiggly, allowing the bias to converge to 0 quickly enough and achieve an AL
estimate of ψ0.
However, this is not a general framework and there are no sensible guidelines for practically doing under-
smoothing.
The next two subsections offer more general approaches.

4.2 Estimating Equations Framework

Suppose that X1, X2, . . . , Xn
iid∼ P0 ∈M and we wish to estimate ψ0 = ψ(P0).

From homework 2 question 3, if ψn is consistent for ψ0 where ψn is a near solution in ψ to

PnU(ψ, ηn) = 0

Then ψn is asymptotically linear with the form

ψn − ψ0 = −a−1
0

 1

n

n∑
i=1

U(ψ0, η0)(Xi) + b0 (ηn − η0)︸ ︷︷ ︸
or IF ηn

+ oP (n
−1/2)

Where a−1
0 :=

(
∂
∂ψP0U(ψ, ηn)

∣∣∣
ψ=ψ0

)−1

and b0 := ∂
∂ηP0U(ψ0, η)

∣∣∣
η=η0

.

Therefore, up to a scaling constant and an additive contribution from the nuisance, the influence
function of the estimator is the estimating function itself, especially when a0 = −1 and b0 = 0.
When is this the case?

Theorem 24 (Neyman Orthogonality (b0 = 0)). Suppose that for all P ∈ M , we have a gradient D that
depends on P through ψ(P ) and a nuisance η. Suppose that

1. Variation independence of ψ(P ) and η.

2. L2(P ) continuity: D(Pθ) → D(P0) in L
2(P0) as θ → 0.

3. b0 := ∂
∂ηP0U(ψ0, η)

∣∣∣
η=η0

is well-defined.

Then b0 = 0

Gradients are desirable estimating functions because they are

1. Pre-Neyman-Orthogonalized (b0 = 0): estimating of the nuisance parameter does not impact the first
order behavior of the estimator.

2. Pre-normalized (a0 = −1): in that the estimating and influence functions are equal.

The estimating equations framework is easy to describe but can only be used when the EIF is an estimating
function for ψ0. Also requires root finding and can fail to be robust by falling out of the parameter space.

4.3 One step correction
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Definition 23 (von-Mises Expansion).
The von-Mises expansion is just a first order expansion of ψ:

ψ(P )− ψ(P0) = −P0D(P ) +R(P, P0)

where R(P, P0) := ψ(P )−ψ(P0) +P0D(P ). This remainder term is often second order in worked examples.

Example 11 (von-Mises Expansion of average density).
ψ(P ) :=

∫
p2(x)dx has gradient D(P ) = 2(p(x)− ψ(P )). Therefore

R(P, P0) := ψ(P )− ψ(P0) + P0[2(p(x)− ψ(P ))]

= −
∫
[p(x)− p0(x)]

2dx

Which is second order in p(x)− p0(x).

Definition 24 (One-step estimator).
The von-Mises expansion of ψ about Pn and P0 is written as

ψ(Pn)− ψ(P0) = −P0D(Pn) +R(Pn, P0)

= (Pn − P0)D(Pn)− PnD(Pn) +R(Pn, P0)

= (Pn − P0)D(P0)− PnD(Pn) + (Pn − P0) [D(Pn)−D(P0)] +R(Pn, P0)

Where D is the EIF and

1. Term 1: is a linear term

2. Term 2: is the source of excess bias of ψ(Pn)

3. Term 3: is an empirical process term that is negligible under certain conditions.

4. Term 4: is a second order remainder term.

We can move the excess source of bias to the LHS and define the one step estimator:

ψos,n := ψ(Pn) + PnD(Pn)

Under the conditions where

1. R(Pn, P0) = oP (n
−1/2): typically a second order term in the nuisance, typically allowing us to flexibly

estimate it at n1/4 rates. We want Pn to be in our model as well.

2. Continuity condition in L2(P ): P0[D(Pn)−D(P0)]
2 = oP (1)

3. There exists a P0-Donsker class s.t. D(Pn) ∈ F w.p. tending to 1. Note: this condition can be removed
if we use cross-fitting.

Then Term 3 and Term 4 are both oP (n
−1/2) and we obtain

ψos,n − ψ0 = PnD(P0) + oP (n
−1/2)

Implying that ψos,n is ALE for ψ0 with influence function D(P0). This means that
√
n(ψos,n − ψ0)⇝ N(0, P0[D(P0)]

2)

further implying that the one-step estimator is asymptotically efficient.
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