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1 Minimax Lower Bounds

1.1 Decision theoretic foundations

We first provide the basic scaffolding of decision theory. Suppose we observe W ∈ W drawn from a
distribution belonging to a statistical model: P ∈ P. In most cases, we are interested in P = Qn, which
denotes the n-fold product measure (iid draws) on Q.

Based on our data realization W , we can take an action in the action space A. The choice of action is
determined by a decision rule, which maps from the data to action space:

T : W → A

The quality of an action is judged by the loss:

L : A×P → R

The quality of a decision rule is judged bt the risk, i.e., the expected loss:

R(T, P ) =

∫
L(T, P )dP (w)

Another quantity of interest is the Bayes risk, which averages the risk over a prior on the statistical model:

r(T,Π) =

∫
R(T, P )dΠ(P ) (1)

Shown below are a few estimands and their associated risks under a choice of loss.

Example 1 (Point estimation under squared error loss).
Suppose our objective is to estimate some functional of P , ψ(P ) ∈ R.

Under squared error loss, L(a, P ) = (a− ψ(P ))2, the risk is the mean-squared error:

R(T, P ) =

∫
(T (w)− ψ(P ))2dP (w)

Example 2 (Estimating a regression function).
Suppose we observe n iid copies (X,Y ) ∼ Q on support X × R and our goal is to estimate the regression
function:

fQ : x→ EQ(Y |X = x) (2)

In this case, the action space is a collection fo functions mapping from X to R. A common choice of loss is
the integrated squared error loss:

L(a, P ) =

∫
[a(x)− fa(x)]

2dν(x)

which yields a corresponding risk known as the mean integrated squared error.

Note that the risk depends on the particular choice of data generating distribution. Thus, we can judge
the performance of a decision rule based on its maximal (worst case) risk with respect to the statistical
model P
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Definition 1 (Minimax risk). The maximal risk of an estimator over a statistical model is defined as so:

sup
P∈P

R(T, P )

The minimax rule is optimal with respect to the maximal risk (i.e., minimizes maximal risk):

T ∗ := argmin
T∈T

sup
P∈P

R(T, P ) ⇐⇒ sup
P∈P

R(T ∗, P ) = inf
T∈T

sup
P∈P

R(T, P ) (3)

In some parametric settings, we can derive a closed form for the minimax estimator, but this is not always
tractable. The alternative becomes finding estimators that achieve a minimax optimal rate (with respect to
sample size).

Definition 2 (Minimax rate optimality). In short, we desire a sequence of decision rules Tn that has a
maximum risk that does not asymptotically dominate the minimax risk, i.e., is minimax rate optimal:

lim inf
n→∞

inf
T∈T

sup
Q∈Q

R(T,Qn)

sup
Q∈Q

R(Tn, Qn)
> 0 (4)

In other words, we need the minimax risk and the maximum risk of our estimator sequence to be of the same
order with respect to n.

However, in practice, finding the form of the numerator and denominate of equation 4 is often difficult,
so we settle for identifying bounds. Later on we’ll develop bounds on the maximum risk, but in the next
subsection, we develop bounds on the minimax risk.

1.2 Bounding the minimax risk

We’ll focus on three main strategies for generating a lower bound on the minimax risk:

1. Bayes risk under least favorable prior

2. Le Cam’s method

3. Fano method

Theorem 1 (Bayes risk bound).
For any decision rule/estimator, we can bound the minimax rate by the Bayes risk under the least favorable
prior:

sup
Π

inf
T∈T

r(T,Π) ≤ inf
T∈T

sup
P∈P

R(T, P ) (5)

Note the following bound holds for any choice of prior, by the least favorable prior gives the tightest bound
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Proof:

sup
Π

r(T,Π) ≤ sup
P

R(T, P ) (Expectation ≤ Maximum)

inf
T∈T

sup
Π

r(T,Π) ≤ inf
T∈T

sup
P

R(T, P ) (Inf both sides)

sup
Π

inf
T∈T

r(T,Π) ≤ inf
T∈T

sup
Π

r(T,Π) (Max-min inequal)

=⇒ sup
Π

inf
T∈T

r(T,Π) ≤ inf
T∈T

sup
P

R(T, P )

Next, we explore Le Cam’s bound, which lower bounds the minimax risk for pairs of distributions in the
statistical model. Clever choices of P1, P2 will yield the tightest bounds.

Theorem 2 (Le Cam’s Method).
Let R be a risk function defined according to a loss L. For any P1, P2:

inf
T∈T

sup
P∈P

R(T, P ) ≥ 1

2
d(P1, P2)||p1 ∧ p2||1

≥ 1

4
d(P1, P2) exp(−KL(P1, P2))

Where

1. Discrepancy: d(P1, P2) = inf
a∈A

[L(a, P1) + L(a, P2)] measures how different the estimation procedures

are.

• Point estimation under squared error loss: a little calculus shows that the discrepancy:

d(P1, P2) = inf
a∈R

[L(a, P1) + L(a, P2)]

=
1

2
[ψ(P1)− ψ(P2)]

2

• Estimating a function with integrated squared error loss: suppose P = Qn and the action space
is a convex subset of functions mapping from X → R:

d(P1, P2) =
1

2

∫
[fQ1

(x)− fQ2
(x)]2dν(x)

2. Testing affinity: ||p1 ∧ p2||1 =
∫
min

(
dP1

dν (w), dP2

dν (w)
)
dν(w) ≡

∫
min(p1, p2)dν measures the overlap

the between distributions P1, P2. Also note

||p1 ∧ p2||1 = 1− TV(P1, P2)

= 1− sup
A

|P1(A)− P2(A)|

3. K-L divergence: KL(P1, P2) :=

{∫
log
(

dP1

dP2
(w)
)
dP1(w) if P1 << P2

+∞ else
quantifies the ”distance” between the distributions

Loosely speaking, in order to obtain a tight bound, we desire the loss of the decision problem to be large
(large discrepancy) while it is difficult to determine whether a sample came from P1 or P2 (small KL).
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Proof: Bound 1: Let π denote a uniform prior over {P1, P2}, i.e., π(P1) = π(P2) =
1
2 .

r(T, π) =

2∑
j=1

[∫
L(T (w), Pj)pj(w)dν(w)

]
π(Pj)

=
1

2

∫  2∑
j=1

L(T (w), Pj)pj(w)

 dν(w) (Linearity and uniform prior)

≥ 1

2

∫
min(p1(w), p2(w))

 2∑
j=1

L(T (w), Pj)

 dν(w) (Lower bound by min)

≥ 1

2

∫
min(p1(w), p2(w))

inf
a

2∑
j=1

L(a, Pj)


︸ ︷︷ ︸

d(P1,P2)

dν(w) (Lower bound by inf)

=
1

2
||p1 ∧ p2||d(P1, P2)

Since T was arbitrary:

1

2
||p1 ∧ p2||d(P1, P2) ≤ inf

T
r(T, π) ≤

sup
sup
P

inf
T
r(T, π) ≤

Max-min
inf
T

sup
P

r(T, π) ≤
Eq 5

inf
T∈T

sup
P∈P

R(T, P )

Bound 2:

exp(−KL(P1, P2)) = exp

(
−
∫

log

(
p1
p2

)
dP1(x)

)
= exp

(∫
log

(√
p2

2

√
p1

2

)
dP1(x)

)

= exp

(
2

∫
log

(√
p2√
p1

)
p1dν(x)

)
≤ exp

(
2 log

(∫ (√
p2√
p1

)
p1dν(x)

))
(Jensens inequal)

= exp

(
log

[(∫
√
p1p2dν(x)

)2
])

=

(∫
√
p1p2dν(x)

)2

=

(∫ √
min(p1, p2),max(p1, p2)dν(x)

)2

=

(∫ √
min(p1, p2), (p1 + p2 −min(p1, p2))dν(x)

)2

≤
∫
(p1 + p2)min(p1, p2)−min(p1, p2)

2dν(x) (Jensen)

= 2

∫
min(p1, p2)dν(x)−

∫
min(p1, p2)

2dν(x) (Pdfs integrate to 1)

= 2||p1 ∧ p2||1 −
∫

min(p1, p2)
2dν(x) (By definition)

=⇒ 1

2
exp(−KL(P1, P2)) ≤

1

2

(
2||p1 ∧ p2||1 −

∫
min(p1, p2)

2dν(x)

)
= ||p1 ∧ p2||1 + C
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Thus,

1

4
d(P1, P2) exp(−KL(P1, P2)) ≤

1

2
d(P1, P2)||p1 ∧ p2||1 ≤ inf

T∈T
sup
P∈P

R(T, P )

Note that the tightness of Le Cam’s bound depends on choice of P1, P2

Strategy 1 (Clever choices of P1, P2 in Le Cam bound).
Le Cam’s method produces the tightest bounds when we compare two distributions with very different
estimands of interest (large discrepancy) but are globally very similar (small KL divergence). A general way
of constructing such densities is by considering a known distribution and perturbing it locally about the
value of interest.

Definition 3 (Holder continuous functions).
A Holder class imposes a smoothness condition on the orders of derivatives of a regression function. It is
just a generalization of a Lipschitz condition. A Σ(β, L) Holder class is defined as:

F ≡
{
f : |f (β−1)(x1)− f (β−1)(x2)| ≤ L|x1 − x2| ∀ x1, x2 ∈ [0, 1]

}
A sufficient condition for f to belong to the Holder class is f be β times differentiable and satisfy:

sup
x
|f (β)(x)| ≤ L

In certain cases, Le Cam’s method will provide rate optimal lower bounds. A good case is on HW 1
Problem 2 for estimating a smooth density at a point.

Example 3 (Le Cam’s minimax bound: estimating a smooth density at a point).
Let Σ(β, L) denote a Holder class where Σ(β, L) ≡ {f ∀x1, x2, |fβ−1(x1)− fβ−1(x2)| ≤ L|x1 − x2|}

P(β, L) =

{
q|q ≥ 0,

∫
q(x)dx = 1, q ∈ Σ(β, L)

}
Suppose we are interested in estimating the density at a point: p(x0). We can find a lower bound on the

minimax risk of order O(n−
2β+1
2β ).

Step 1: we are using Le Cam’s method, so we propose two candidate distributions:

p1 : x→ σ−1ϕ

(
x− x0
σ

)
p2 : x→ p1 + Lhβn

[
K

(
x− x0
hn

)
−K

(
x− hn − x0

hn

)]
And for sufficiently small choice of a > 0, K : x→ a exp

(
− 1

1−4x2

)
I(|x| ≤ 1/2).

Step 2: verify that these distributions are indeed in P

6
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1. p1: is clearly infinitely differentiable and is a density by definition. To show it is Holder, we can show:

∣∣∣∣ dβdxβ p1(x)
∣∣∣∣ ≤ L uniformly in x ∈ R

Turns out:

dβ

dxβ
p1(x) = (−1)βHβ(x)ϕ(x)

Where Hβ(x) is the β-th Hermite polynomial. Since lim
|x|→∞

1√
2π
Hβ(x)e

−x2/2 = 0 and the derivative

is continuous,
∣∣∣ dβ

dxβ p1(x)
∣∣∣ is bounded uniformly by a constant. We can make this constant ≤ L by

choosing σ large enough.

2. p2: clearly p2 integrates to 1 because the integrals of the K terms cancel. For p2 to be positive, we

need p1(x)− LhβnK
(

x−hn−x0

hn

)
> 0 over the support of the bump, i.e.:

0 < p1(x)− LhβnK

(
x− hn − x0

hn

)

≡ 0 < p1(x)− Lhβna exp

− 1

1− 4
(

x−hn−x0

hn

)2
 I

(∣∣∣∣x− hn − x0
hn

∣∣∣∣ ≤ 1

2

)

≡ 0 < p1(x)− Lhβna exp

− 1

1− 4
(

x−hn−x0

hn

)2
 I

(
x ∈

[
x0 + 1− hn

2
, x0 + 1 +

hn
2

])

Choose a∗ < inf
x∈[x0+1−hn

2 ,x0+1+hn
2 ]

p1(x)

Lhβ
n exp

(
− 1

1−4( x−hn−x0
hn )

2

) . This ensures positivity. To ensure the

(β − 1)-th derivative is bounded, we see that K is just a scaled bump function on [−0.5, 0.5] and
continuous functions on compact support attain their maximum and minimum, meaning the β-th
derivative is bounded by a constant. We can force this constant to be less than L by choosing σ, a > 0
small enough.

Step 3: study the KL divergence:

−KL(P1, P2) =

∫
log

(
p2
p1

)
p1dν

=

∫
log

(
p1 + bump

p1

)
p1dν

=

∫  ∞∑
i=1

(−1)i+1

(
bump
p1

)i
i

 p1dν

7
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Let’s inspect these terms individually:

1st order term =

∫
bump dν = 0

2nd order term =
1

2

∫
L2h2βp−1(x)

[
K

(
x− x0
hn

)
−K

(
x− x0 − 1

hn

)]2
dν

hn small
=

∫
c1h

2βp−1(x)

[
K

(
x− x0
hn

)2

+K

(
x− x0 − 1

hn

)2
]
dν (When hn small, bumps orthog)

= c1h
2β+1
n

∫
p−1(hnU + x0)

(
K2(U) +K2

(
U − 1

hn

))
dν (U-sub)

= c2h
2β+1
n

3rd order terms = o(h3β)

Thus, −KL(P1, P2) ≥ ch2β+1
n + o(h3β). Under iid draws:

−KL(Pn
1 , P

n
2 ) ≥ cnh2β+1

n + no(h3β)

To get a stable bound on the KL, hn = O
(
n−

1
2β+1

)
. Step 4: study the discrepancy:

d(P1, P2) =
1

2
(p1(x0)− p2(x0))

2

=
1

2
(p1(x0)− p1(x0)− Lhβn(K(0)−K(−1/hn)))

2

= Ch2βn

Thus, by Le Cam:

inf
T∈T

sup
P∈P

R(T, P ) ≥ 1

4
d(P1, P2) exp(−KL(P1, P2)) ≥ ch2βn

= c∗n−
2β

2β+1 (Subbing in from KL deriv)

Another use case of Le Cam’s method: estimating the derivative of a density at a point!

Example 4 (Estimating the derivative of a density at a point).
Suppose we observe n iid draws from a density f ∈ P(β, L) for L > 0, β > 1. Our objective is to estimate
f ′(x0), the derivative at a fixed point. We quantify performance in terms of MSE. Given the KDE:

f̂h : x→ 1

nh

n∑
i=1

K

(
Xi − x0

h

)
For a kernel K satisyfing:

1. K(u) = 0 for all u /∈ [−1, 1]

2.
∫
K(u)du = 1, and ∀ j = 1, . . . , beta− 2m

∫
ujK(u)du = 0

3. K differentiable on whole real line with uniformly bounded derivative.

Turns out the KDE achieves inf
T∈T

sup
P∈P

R(T, P ) = O(n−
2[β−1]
2β+1 ). See HW solutions for more details.

8
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In other cases, Le Cam’s method fails to provide a rate optimal lower bound, such as in the case of
estimating a smooth regression function in terms of mean integrated squared error. In this setting, we need
an alternative approach, provided by Fano’s method.

Theorem 3 (Fano’s method).
Let R be a risk function defined according to nonnegative loss L. For N ≥ 3, let P1, . . . , PN ∈ P and define
η as the minimum discrepency and P̄ as the uniform mixture of P1, . . . , PN :

η := min
j ̸=k

d(Pj , Pk)

P̄ :=
1

N

N∑
j=1

Pj

We obtain the following lower bound on thje minimax risk:

inf
T∈T

sup
P∈P

R(T, P ) ≥ η

2

[
1−

log 2 + 1
N

∑N
j=1KL(Pj , P̄ )

log(N)

]

≥ η

2

1− log 2 + max
j ̸=k

KL(Pj , P̄ )

log(N)

 (6)

Proof: omitted for the sake of brevity, but can be found in the Chapter 1 lecture notes. Starts by lower
bounding the bayes risk, then taking the maximum density, then applying Jensen’s inequality to bound the
integral of the max density.

Now we derive the lower bound for the minimax risk for estimating a Holder-continuous regression
function!

Example 5 (Minimax lower bound for estimating a smooth regression function).

Suppose we observe (X1, Y1), . . . , (Xn, Yn)
iid∼ Q ∈ Q, where X ∼ U [0, 1] and Y |X = x ∼ N(fQ(x), 1) where

fQ(x) ∈ F(β, L) where F(β, L). Suppose our objective is to estimate fQ(x), with performance quantified by
the mean integrated squared error:

L(a,Qn) =

∫ 1

0

[a(x)− fQ(x)]
2dx

Let our candidate class of functions be a convex combination of orthonormal basis functions, where the basis
is just a scaled version of a smooth bump function:

F1 ≡

x→
m∑
j=1

wjϕj(x) : w ∈ {0, 1}m


Where ϕj(x) = LhβK

(
x− j

m+1

h

)
and for fixed h > 0 we have m ∈

[
8, 1h − 1

]
where for sufficiently small

a > 0:

K(x) = a exp

(
− 1

4x2

)
I(|x| < 1/2)

9



Ethan Ashby STAT582 Notes Winter 2023

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

Thus, fW (x) is written as a sum of bump functions centered at j
m+1 for j up to m, scaled by binary wj ,

and the condition that m ≤ 1
h − 1 =⇒ h ≤ 1

m+1 ensures the bumps do not overlap (are orthogonal).

Thus, we’ve created a class of regression functions s.t., |F1| = 2m. Let’s define our collection of distribu-
tions according to {Pw := Qn

w : w ∈ Ω̃ ⊂ {0, 1}m}, since the collection of distributions is fully determined
by w ∈ {0, 1}m.

Using Fano’s method, we obtain the general lower bound on the minimax risk:

inf
T∈T

sup
P∈P

R(T, P ) ≥
min
wν

d(Pw, Pν)

2

1− log 2 + max
w ̸=ν

KL(Pw, Pν)

log |Ω̃|


Recall from earlier in the chapter:

d(Pw, Pν) =
1

2

∫
[fw(x)− fν(x)]

2dx

=
1

2

m∑
j=1

[wj − νj ]
2

∫
ϕj(x)

2dx (Bases orthogonal so cross terms cancel)

=
1

2

m∑
j=1

[wj − νj ]
2L2h2β+1

∫
K(u)2du︸ ︷︷ ︸

c2

(U-sub)

= c2L
2h2β+1

m∑
j=1

[wj − νj ]
2

︸ ︷︷ ︸
Hamming dist

= c3h
2β+1H(w, ν)

(
c3 :=

c2L
2

2

)
Also we can show:

KL(Pw, Pν) =
n

2

∫ 1

0

[fw(x)− fν(x)]
2dx

= c3nh
2β+1H(w, ν) (By same logic)

≤ c3nh
2β+1m since H(w, ν) ≤ m)

10
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Plugging into Fano’s bound, we obtain:

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1

2

(
1− log 2 + c3nh

2β+1

log |Ω̃|

)
=
c3h

2β+1

2

(
1− log 2 + c3nh

2β+1

m log 2

)
In order for this bound to be useful, the RHS must be greater than 0, therefore, h = O(n−

1
2β+1 ), which

indicates that the LHS converges to 0 rate no faster than n−1.
Recall that in a general MLE problem:

√
n(β̂ − β0) ⇒ N(0, σ2)

=⇒ n(β̂ − β0)
2

σ2
⇒ Op(1)

=⇒ (β̂ − β0)
2 ⇒ Op

(
1

n

)
=⇒ E

[∫
(β̂ − β)2dx

]
= Op

(
1

n

)
This means that our minimax lower bound problem is at least as hard as a parametric problem. This

doesn’t tell us much.
Can we do better? Can we find a set Ω̃ ⊂ {0, 1}m for which |Ω̃| is large and the Hamming distance is

also large, maximizing the RHS?
Turns out we can! The Varshamov-Gilbert Lemma guarantees that for m ≥ 8, there exists a subset Ω s.t.

|Ω| ≥ 2m/8 (large cardinality) and min
w ̸=ν

H(w, ν) ≥ m
8 . If we choose, the subset guaranteed to exist according

to the lemma:

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1m

16

(
1− log 2 + c3nh

2β+1m

m log(2)/8

)
=
c3h

2β+1m

16

(
1− 8

m
− 8c3nh

2β+1

log(2)

)
We want to choose m as large as possible to provide the tightest bound. Recall that earlier in the proof we
assumed m ≤ 1

h − 1. Choose m = ⌊ 1
h − 1⌋ (smallest integer less than 1

h − 1). Noting 1
2h < m < 1

h :

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1m

16

(
1− 8

m
− 8c3nh

2β+1

log(2)

)
≥ c3h

2β

32

(
1− 8h− 8c3nh

2β+1

log(2)

)
To ensure the RHS is nonzero, h = Op(n

− 1
2β+1 ). This implies that the lower bound on the minimax risk is

on the order of n−2β/(2β+1) .

11
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2 Kernel Density Estimation

This section deals with estimating a density. More information can be found in Chapter 24 of Van der
Vaart’s Asymptotic Statistics and Section 6.3 of Wasserman’s All of Nonparametric Statistics.

Setup: Suppose we draw X1, . . . , Xn
iid∼ Q, and let F : x→ Q(X ≤ x) denote the CDF of Q. We assume

Q is continuous and the goal is to estimate f , its derivative.
A naive estimator of f might be built on the Empirical Distribution Function, F̂ : x→ 1

n

∑n
i=1 I(Xi ≤ x),

which is a known good estimator of F . However, the derivative of the EDF is not well-defined because it is
a step function and is not differentiable.

Another estimator considers the limiting definition of a derivative:

f(x0) = lim
h→0

F (x0 + h)− F (x0)

2h

≈ F (x0 + h)− F (x0)

2h
for small h > 0

=⇒ f̂h(x0) =
1

2nh

∑
I
(
|xi − x0|

h
≤ 1

)
This estimator takes the form of a KDE by placing mass at each point over with diameter 2h. However, this
estimate is not smooth! Can we achieve a smoother approximation?

Definition 4 (Kernel (s-order), KDE).
A kernel is a function satisfying

∫
K(u)du = 1.

An s-order kernel satisfies
∫
urK(u)du = 0 for all r = 1, 2, . . . , s− 1 and |

∫
usK(u)du| <∞.

1. If K is symmetric, it is at least 2nd order.

2. Higher order kernels can lead to estimator with less bias.

A Kernel Density Estimator takes the form:

f̂h : x→ 1

nh

n∑
i=1

K

(
Xi − x

h

)
Examples of Kernels:

1. Uniform: 1
2 I(|u| ≤ 1)

2. Epanechnikov: 3
4 (1− u2)I(|u| ≤ 1)

3. Biweight: 15
16 (1− u2)2I(|u| ≤ 1)

4. Triweight: 35
32 (1− u2)3I(|u| ≤ 1)

5. Gaussian: 1√
2π

exp(−u2/2)

Our goal is to study the performance of a KDE to estimate the density at a point f(x0), with performance
quantified according to MSE.

Example 6 (Estimating density at a point with KDE in 1-D).
Suppose f ∈ Σ(β = 2, L) a Holder class. That is, suppose:

|f ′(x1)− f ′(x2)| ≤ L|x1 − x2| ∀ x1, x2

12
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We focus on the situation where K is bounded, second order, and has bounded support. We are interested
in the mean squared error:

E[(f̂h(x0)− f(x0))
2] = Bias2 +Variance

Step 1: Let’s study the bias.

Bias = E[f̂h(x0)]− f(x0)

=
1

nh

∑
E
(
K

(
Xi − x0

h

))
− f(x0)

=
1

h
E
(
K

(
Xi − x0

h

))
− f(x0) (iid)

=
1

h

∫
K

(
Xi − x0

h

)
f(xi)dxi − f(x0)

=

∫
K(u)f(x0 + uh)du− f(x0)

=

∫
K(u) [f(x0 + uh)− f(x0)]︸ ︷︷ ︸

⋆

du (Bc kernel integrates to 1)

By mean value theorem, we know that ⋆ = uhf ′(x̃uh). Thus:

Bias =

∫
K(u)uhf ′(x̃uh)du

=

∫
K(u)uhf ′(x0)du︸ ︷︷ ︸∫

uK(u)du=0

+

∫
K(u)uh[f ′(x̃uh)− f ′(x0)]du

=

∫
K(u)uh[f ′(x̃uh)− f ′(x0)]du

Now we can write:

|Bias| = |
∫
K(u)uh[f ′(x̃uh)− f ′(x0)]du|

≤ h

∫
K(u)|u||f ′(x̃uh)− f ′(x0)|du (Jensen)

≤ Lh

∫
K(u)|u||x̃uh − x0|du (f is L2 Holder, deriv is Lipschitz)

≤ Lh2
∫
K(u)u2du︸ ︷︷ ︸

:=σ2
k

(x̃uh is at most uh from x0)

= Lh2σ2
k

=⇒ Bias2 ≤ L2h4σ4
k

13
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Step 2: Let’s study the variance:

Var(f̂h(x0)) = Var

[
1

nh

∑
K

(
Xi − x0

h

)]
=

1

n2h2

∑
var

(
K

(
Xi − x0

h

))
(independent)

=
1

nh2
var

(
K

(
Xi − x0

h

))
(identical)

≤ 1

nh2
E

[
K

(
Xi − x0

h

)2
]
(var < 2nd moment)

=
1

nh

∫
K(u)2f(x0 + uh)du︸ ︷︷ ︸

⋆

Recalling that f is holder and K has bdd support: let k1 = inf(u : K(u) > 0) and k2 = sup(u : K(u) > 0):

⋆ =

∫ k2

k1

K(u)2f(x0 + uh)du

≤

[
sup

u∈[k1,k2]

f(x0 + uh)

]∫ k2

k1

K(u)2du

≤

[
sup

t∈[k1,k2]

f(x0 + t)

]
︸ ︷︷ ︸

finite

∫ k2

k1

K(u)2du︸ ︷︷ ︸
2nd order kern bounded

:= c (If h < 1)

Thus, we show that:

Var(f̂h(x0)) =
c

nh

Step 3: bring it all together:

MSE ≤ L2σ4
kh

4 +
c

nh

Setting the two terms equal to each other ensures the rate that h should take to minimize the bound:

L2σ4
kh

4 =
c

nh

=⇒ h = Cn−1/5

Implying that the bound on the MSE is of the form o(n−4/5).
Note: if we use a β-th order kernel, then the MSE of the order n−2β/[2β+1] and we need to evaluate a

(ℓ− 1)-th order taylor expansion of f at x0 before applying mean value theorem.
Note: if we estimate a density in d > 1 dimesions, the rate is of the form n−2β/[2β+d].

14
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3 Concentration Inequalities

You can find more information in Ch 2 of Wainwright text.
Suppose X1, . . . , Xn are independent random variables, for which we want to bound the tail probability

of the function of them:
P (f(X1, . . . , Xn) ≥ t) (7)

In many cases, f : (X1, . . . , Xn) → 1
n

∑
xi

We could consider bounding the expression in 7 using asymptotics:

P (X̄n ≥ µ+
σt√
n
) → 1− Φ(t)

Where Φ is a normal CDF. But we usually have finite sample, so the asymptotic guarantees are inexact.
What can we say about finite samples.

In this section, we present three kinds of bounds:

1. Moment-based bounds: Markov, Chebyshev

2. MGF-based bounds: Chernoff, Hoeffding, sub-Gaussian random variables, sub-exponential random
variables, Bernstein’s inequality.

3. Martingale-based bounds: Azume-Hoeffding, bounded differences

3.1 Moment-based bounds

Theorem 4 (Markov Inequality).
If X ≥ 0,E(X) <∞ and t > 0, then:

P (X ≥ t) ≤ E(X)

t
(8)

Proof:

P (X ≥ t) =

∫ ∞

t

dP (x)

≤
∫ ∞

t

X

t
dP (x) (1 ≤ x/t when x ≥ t)

≤
∫ ∞

0

X

t
dP (x) =

E(x)
t

Theorem 5 (Applying Markov to transformations of |X − E(X)|).
Suppose E(X) <∞, h : [0,∞) → [0,∞) is a nondecreasing function and E[h(|X − E(X)|)] <∞. Then:

P (|X − E(X)| ≥ t) ≤ E(h(|X − E(X)|))
h(t)

A special case of this inequality is Chebyshev inequality: for k ∈ N

P (|X − E(X)| ≥ t) ≤ E(|X − E(X)|k)
tk

15
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Proof: Because h is non-decreasing.

{|X − E(X)| ≥ t} ⊂ {h(|X − E(X)|) ≥ h(t)}

Hence:

P{|X − E(X)| ≥ t} ≤ P{h(|X − E(X)|) ≥ h(t)}
≤⊂ {h(|X − E(X)|) ≥ h(t)

3.2 MGF-based bounds

We can attain even sharper tail bounds once we assume more about the distribution of X, such as making
assumptions about the moment generating function! The fundamental MGF-based bound is the Chernoff
bound.

Theorem 6 (Chernoff).
Suppose X has an MGF in the neighborhood of 0, meaning there exists b > 0 such that E(exp(λX)) < ∞
for all |λ| ≤ b. Then for all t > 0 and λ ∈ (0, b], it is true that:

P{X − E(X) ≥ t} = P
{
eλ(X−E(X)) ≥ eλt

}
≤

E
[
eλ(X−E(X))

]
eλt

≡ MX−µ(λ)

eλt

Hence for any t > 0:

P{X − E(X) ≥ t} ≤ inf
λ>0

MX−µ(λ)

eλt

logP{X − E(X) ≥ t} ≤ −sup
λ>0

{λt− logMX−µ(λ)}
(9)

Proof: follows directly from Markov’s inequality and properties of MGF.

Example 7 (Chernoff bound on Gaussian RV).
Suppose X ∼ N(µ, σ2). In this case:

MX−µ(λ) = E[exp(λ(X − µ))]

=
1√
2πσ

∫
exp

{
λ(x− µ)− (x− µ)2

2σ2

}
dx

=
1√
2πσ

∫
exp

{
λ(z)− (z)2

2σ2

}
dx z = x− µ

= exp

{
λ2σ2

2

}
1√
2πσ

∫
exp

{
− (z/σ − λσ)2

2

}
dx (Complete the square)

= exp

{
λ2σ2

2

}

16
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The Chenoff bound gives us:

logP{X − E(X) ≥ t} ≤ −sup
λ>0

{λt− logMX−µ(λ)}

= −sup
λ>0

{
λt− λ2σ2

2

}
Solving for λ∗ that maximizes yields λ∗ = t/σ2, yielding the following bound:

logP{X − E(X) ≥ t} ≤ − t2

2σ2

We can define the concentrations of other variables with respect to variables that we know and love! An
obvious case is the Gaussian!

Definition 5 (Sub-Gaussian random variables).
A random variable is sub-Gaussian if its cumulant generating function (log MGF) is less than the Gaussian:

logMX−µ(λ) ≤
λ2σ2

2

By Chernoff, a sub-Gaussian random variable also satisfies the tail probability inequality:

logP (X − µ ≥ t) ≤ − t2

2σ2

≡ P (X − µ ≥ t) ≤ exp

(
− t2

2σ2

)
Meaning that the tails of a sub-Gaussian random variable with parameter σ2 cannot be thicker than those of
a N(0, σ2) random variable.

We can apply the sub-Gaussian framework to the setting of random variables with bounded support. It
is clear that they are sub-Gaussian bc they have 0 valued tails.

Theorem 7 (Hoeffding Inequality). If the support of a random variable X ∼ P is bounded in [a, b], then
X is sub-Gaussian with parameter σ2 = (b− a)2/4. This yields the sub-Gaussian/Chernoff tail bound of:

logP (X − µ ≥ t) ≤ − 2t2

(b− a)2
(10)

More generally, whenX1, . . . , Xn are independent with bounded support on [a, b], then logM∑
Xi−E(Xi)(λ) =∑

logMXi−E(Xi), hence the bound on the X̄n is just a sum of the upper bounds on individual Xi:

logP
{
X̄n − E(X̄n) ≥ t

}
≤ − 2nt2

(b− a)2

This proves the useful fact that sums of sub-G variables are sub-G.

Proof: WLOG suppose E(X) = 0 (if not we can just mean center X). Let f: λ → MX−µ(λ) denote the

17
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cumulant generating function X. Note f ′(λ = 0) = E(X)
E(exp(t·0)) = 0. By the fundamental theorem of calculus:

f(λ) =

∫ λ

0

f ′(r)dr =

∫ λ

0

∫ r

0

f ′′(s)dsdr

So we can study the second derivative, bound it, and then integrate! Note:

f ′(λ) =
E(XeλX)

E(eλX)

f ′′(λ) =
E(X2eλX)E(eλX)

(E(eλX))2
− E(XeλX)E(XeλX)

(E(eλX))2

=
E(X2eλX)

E(eλX)
−
(
E(XeλX)

E(eλX)

)2

Thus, f ′′ is the variance of a random variable Zλ with density equal to eλz

E(eλz)
p(z), which has support bounded

in [a, b]. Thus, Zλ can be at most b−a
2 away from the midpoint a+b

2 . Taking this fact:

f ′′(λ) = Var(Zλ)

= Var

(
Zλ − a+ b

2

)
≤ E

[(
Zλ − a+ b

2

)2
]

(Var bdd by 2nd moment)

≤ (b− a)2

4

Plugging into the earlier equation:

f(λ) ≤ (b− a)2

4

∫ λ

0

∫ r

0

dsdr

=
(b− a)2

4

λ2

2

Hence, since f(λ) was defined as the cumulant generating function we obtain that, X is sub-G with parameter

σ2 = (b−a)2

4 .
Now by the Chernoff bound on a sub-G random variable, we obtain Hoeffding’s inequality:

P (X − µ ≥ t) ≤ exp

(
− 2t2

(b− a)2

)

We can apply a similar framework to Exponential random variables!

Definition 6 (Subexponential random variables).
A random variable X is sub-exponential with parameters (σ2, b) if for all |λ| < 1

b ,

logMx−µ(λ) ≤
λ2σ2

2
(11)

Alternatively, a nonnegative random variable is sub-exponential with parameter a if ∀0 < t < a:

MX(t) ≡ E(exp(tX)) ≤ a

a− t
(12)

18
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By Chernoff, a sub-Exponential random variable also satisfies the following tail probability inequality:

logP (X ≥ µ+ t) ≤

{
− t2

2σ2 , if 0 ≤ t ≤ σ2/b

− t
2b , if t > σ2/b

(13)

Proof: By Chernoff

logP (X − µ ≥ t) ≤ − sup
λ∈(0,1/b)

[λt− logMX−µ(λ)]

≤ − sup
λ∈(0,1/b)

[
λt− λ2σ2

2

]
Case 1: Over λ ∈ R, the maximizing λ∗ = t

σ2 . If t < σ2/b =⇒ λ∗ < 1/b, yielding:

− sup
λ∈(0,1/b)

[
λt− λ2σ2

2

]
= −

[
λ∗t− (λ∗)2σ2

2

]
= − t2

2σ2

Case 2: suppose t ≥ σ2/b. Since f(λ) := λt− (λ)2σ2

2 is monotonically increasing over λ ∈ (0, 1/b), then:

sup
λ∈(0,1/b)

f(λ) = f(1/b) =
t

b
− σ2

2b2
≥ t

2b

=⇒ − sup
λ∈(0,1/b)

f(λ) ≤ − t

2b

Together, cases 1 and 2 complete the proof!

Strategy 2 (Showing sub-E).
Take the following approaches to show a random variable is sub-Exponential:

1. Show a random variable is sub-G and therefore sub=exponential with parameters (σ2, b)

2. Show the random variable is a sum of sub-G/sub-E random variables.

3. If the following is true for some constant a > 0:

E[Xb] ≤ b!

ab

then X is sub-exponential.

4. A random variable X is sub-Gaussian iff X2 is sub-exponential.

The following are approaches to showing a random variable is NOT sub-E:

1. Use contrapositive: if there exists some a > 0 such that for every natural number b:

E[Xb] ≤ 2b+1 b!

ab

then X is sub-E with parameter a. Show there does not exist a constant a satisfying as b→ ∞.

2. Show a particular moment of a random variable is infinite/unbounded.
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Example 8 (Bounded random variable).
Suppose X is concentrated about its mean |X − µ| ≤ b and also that Var(X) = σ2. We can show that X is
sub-E with params (2σ2, 2b). Note:

MX−µ(λ) = E[exp(λ(X − µ))]

= 1 + 0 +
λ2σ2

2
+

∞∑
k=3

λk
E[(X − µ)k]

k!

= 1 +
λ2σ2

2
+
∑

λ2λk−2E[(X − µ)2(X − µ)k−2]

k!

≤ 1 +
λ2σ2

2
+ λ2σ2

∞∑
k=3

(|λ|b)k−2

k!
(|X − µ| ≤ b)

≤ 1 +
λ2σ2

2
+
λ2σ2

2

∞∑
k=3

(|λ|b)k−2

= 1 +
λ2σ2

2

∞∑
k=0

(|λ|b)k (recenter sum)

If |λ| < 1/b, the geometric series converges:

” = 1 +
λ2σ2

2[1− |λ|b]
≤ exp

(
λ2σ2

2[1− |λ|b]

)
FACT : 1 + x ≤ exp(x)

Thus whenever |λ| < 1
2b , 1− |λ|b > 1/2 meaning

MX−µ(λ) ≤ exp(λ2σ2)

implying that X is sub-E with params (2σ2, 2b)

As in the previous example for a bounded random variable, we can establish a different concentration
inequality, which we will subsequently extend to sample means.

Theorem 8 (Bernstein’s inequality for bdd RVs).
Suppose X is a RV that is bounded, |X − µ| ≤ b and let σ2 = Var(X). For all t > 0;

P{X − µ ≥ t} ≤ exp

(
− t2

2[σ2 + bt]

)
(14)

Proof: recall from the previous example for a bounded random variable that

MX−µ(λ) ≤ exp

(
λ2σ2

2[1− |λ|b]

)
And by Chernoff for |λ| < 1/b

P (X − µ ≥ t) ≤ MX−µ(λ)

eλt

=⇒ logP (X − µ ≥ t) ≤ −[λt− logMX−µ(λ)]

≤ −λt+ λ2σ2

2[1− |λ|b]
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Plugging in λ = t
(bt+σ2) and reducing gives us the desired result.

Theorem 9 (Bernstein’s inequality for sample means).
SupposeX1, . . . , Xn are independent RVs satisfying |Xi−µi| ≤ b and let σ2

i := Var(Xi) and σ̄
2
n := 1

n

∑n
i=1 σ

2
i :

P (X̄n − E(X̄n) ≥ t) ≤ exp

(
− nt2

2[σ̄2
n + bt]

)
(15)

We can compare the performance of the Bernstein and Hoeffding concentration inequalities for sample
means. Suppose |Xi − µi| ≤ b and let σ̄2

n := 1
n

∑n
i=1 σ

2
i . The following are true:

P (X̄n − E(X̄n) ≥ t) ≤ exp

(
− nt2

2[σ̄2
n + bt]

)
(Bernstein)

P (X̄n − E(Xn) ≥ t) ≤ exp

(
−nt

2

2b2

)
(Hoeffding)

If σ̄2
n is small (small average variance) and t is small, then Bernstein’s inequality gives us sharper bounds.

Thus, Bernstein beats Hoeffding in small variance cases.

3.3 Martingale-based bounds

We introduce the bounded differences inequality, which applies to functions of X1, . . . , Xn that are not
sample means! First, we must introduce the bounded differences property:

Definition 7 (Bounded differences property).
A function f : Xn → R satisfies the bounded differences property if for all i there exists a finite ci <∞ s.t.
the following holds ∀x1, . . . , xn, x′i ∈ X :

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci (16)

Essentially, the BDP ensures that f cannot depend too heavily on one of its inputs.

Example 9 (f that satisifies BDP).
Let f : Xn → R be defined as:

f(X) := sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

g(Xi)− E(g(Xi))

∣∣∣∣∣
If we require that the functions in G are uniformly bounded like so:

sup
g∈G

sup
x∈X

|g(x)| ≤ 1
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f satisfes the BDP! To show this, we inspect:

f(X1, . . . , Xn)− f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn) = sup

g∈G

∣∣∣∣∣ 1n
n∑

i=1

[g(Xi)− E(g(Xi))]

∣∣∣∣∣− sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

(g(Xi)− E(g(Xi))) +
1

n
(g(X′

i)− g(Xi))

∣∣∣∣∣
≤

1

n
sup
g∈G

|g(Xi)− g(X′
i)| (Triangle inequal)

≤
2

n

By symmetry, |f(X)− f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn)| ≤ 2

n

Theorem 10 (Bounded differences inequality; McDiarmind’s Inequality).
If X = (X1, . . . , Xn) is a collection of independent random variables and arbitrary f satisfies the BDP with
constants c1, . . . , cn, ∀t > 0:

P (|f(X)− E(f(X))| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
(17)

Proof: we can prove this by making use of a telescoping sum. Define:

D1 := E(f(X)|X1)− E(f(X))

Dj := E(f(X)|X1, . . . , Xj)− E(f(X)|X1, . . . , Xj−1)

Roughly speaking, Dj denotes the change in expectation by conditioning on the additional Xj . Note:

f(X)− E(f(X)) = E(f(X)|X1, . . . , Xn)− E(f(X)) ≡
n∑

i=1

Dj

To establish 17, we show:

P

(
|

n∑
i=1

Dj | ≤ t

)
≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
(18)

Supposing the following about Dj :

1. Dj is a function of (X1, . . . , Xj) and is independent of (Xj+1, . . . , Xn)

2. E[Dj |X1, . . . , Xj−1] = E[E[f(X)|X1, . . . , Xj ]− E[f(X)|X1, . . . , Xj−1]|X1, . . . , Xj−1] = 0

3. E|Dj | <∞
Then {Dj}nj=1 is a martingale difference sequence. By the Azuma-Hoeffding Lemma, if the above enumerated
conditions hold, then 18 holds as well! Then we have achieved McDiarmind’s inequality!
Proving Azuma-Hoeffding makes repeated use of the sub-Gaussianity of bounded random variables. In short,
let Aj ≤ Dj ≤ Bj where:

Aj := inf
xj

E[f(X)|X1, . . . , Xj−1, Xj = xj ]− E[f(X)|X1, . . . , Xj−1]

Bj := sup
xj

E[f(X)|X1, . . . , Xj−1, Xj = xj ]− E[f(X)|X1, . . . , Xj−1]

Also note that:

Bj −Aj = sup
xj ,x′

j

(
E(f(X)|X1, . . . , Xj = xj)− E(f(X)|X1, . . . , Xj = x′j)

)
= sup

xj ,x′
j

E(f(X1, . . . , Xj−1, xj , Xj+1, . . . , Xn)|X1, . . . , Xj−1)

− E[f(X1, . . . , Xj−1, x
′
j , Xj+1, . . . , Xn|X1, . . . , Xj−1)]

≤ cj (BDP)
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Since Aj ≤ Dj ≤ Bj , then Dj |X1, . . . , Xj−1 is sub-G with parameter σ2
j =

c2j
4 . By definition of sub-G RV:

E[exp(λDj)|X1, . . . , Xj−1] ≤ exp

(
λ2c2j
8

)

Now let’s return to our quantity of interest
∑n

j=1Dj :

E

exp

λ n∑
j=1

Dj

 = E

E
exp

λ n∑
j=1

Dj

∣∣∣X1, . . . , Xn−1

 (Tower)

= E

exp
λ n−1∑

j=1

Dj

E(exp(λDn)|X1, . . . , Xn−1)


≤ exp

(
λ2c2n
8

)
E

exp
λ n−1∑

j=1

Dj

 (Fact above)

iterate . . .

≤ exp

(
λ2
∑n

i=1 c
2
j

8

)

Hence, we’ve shown
∑n

j=1Dj is sub-G with parameter
∑n

j=1 c2j
4 . Our desired result in 17 falls from Chernoff

and recognizing:

P (f(X)− E(f(X)) ≥ t) ≤ exp

(
− 2t2∑n

j=1 c
2
j

)

P (f(X)− E(f(X)) ≤ −t) ≤ exp

(
− 2t2∑n

j=1 c
2
j

)

=⇒ P (|f(X)− E(f(X))| ≥ t) ≤ 2 exp

(
− 2t2∑n

j=1 c
2
j

)
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4 Empirical Risk Minimization, VC Dimension, Rademacher Com-
plexity

4.1 Empirical Risk Minimization

Many statistical estimation tasks can be cast as minimizers of a risk function averaged over the empirical
distribution of your data.

As a quick review of empirical process notation, we define the true expectation and empirical expectations
of a function f with respect to measures like so:

Pf :=

∫
f(x)dP (x)

Pnf :=
1

n

n∑
i=1

f(Xi)

Suppose we have X1, . . . , Xn
iid∼ P and let ℓ : X ×Θ → R denote a loss function. The goal of estimation

should be to find θ̂ ∈ Θ such that the risk, defined as:

Pℓ(·, θ̂) :=
∫
ℓ(x, θ̂)dP (x)

is nearly equal to inf
θ∈Θ

Pℓ(·, θ). Suppose that the infimum is achieved for some θ0 ∈ Θ.

The regret quantifies how close we are to our goal:

Reg(θ̂) := Pℓ(θ̂)− inf
θ∈Θ

Pℓ(θ) (19)

If we had access to the true distribution function, P , we could solve for θ0 exactly simply by solving a
minimization problem: minimize Pℓ(θ) subject to θ ∈ Θ. However, do don’t know the distribution, however,
we have a good approximation of it in the empirical distribution, Pn. Thus, the empirical risk minimizer
which is the solution to: minimize Pnℓ(θ) subject to θ ∈ Θ.

Example 10 (Regression and Classification).
Setting 1 (Regression): Suppose X = (W,Y ) where W is a feature and Y is a R-valued outcome. The
goal is to predict Y by W . Suppose Θ ⊂ L2(Pw) := {f : W → R;

∫
f(w)2dPw(w) < ∞}. Here we use the

squared-error loss: ℓ(x, θ) = [y − θ(w)]2.
In this case, if Θ contains the regression function, f∗ : w → EP (Y |W = w), then θ0 = f∗. If f∗ /∈ Θ, then
θ0 is just the L-2 projection of the regression function onto Θ. The regret is defined as:

Regret(θ̂) = P [(θ̂ − θ)2] =

∫
[θ̂(w)− θ0(w)]

2dPw(w)

Setting 2 (Classification): Suppose X = (W,Y ) where W is a feature and Y ∈ {0, 1} and the goal is to
classify Y based on W . Θ := {f ;W :→ {0, 1}}. The loss is the 0-1 loss: ℓ(x, θ) = I(θ(w) ̸= y). If Θ contains
f∗ : w → I(EP (Y |W = w) > 1/2), then f∗ = θ0. The regret is defined as:

Regret(θ) = EP [ |2EP (Y |W = w)− 1| I(θ(w) ̸= θ0(w))]

Thus, we pay the biggest price when we misclassify something easy, i.e., with EP (Y |W = w) close to 0 or 1.

The following strategy provides a template for analyzing ERMs. It is useful in many contexts!
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Strategy 3 (Analyzing ERMs).
Note we can define the regret of an ERM as:

Regret(θ̂) := Pℓ(θ̂)− Pℓ(θ0)

≤ Pℓ(θ̂)− Pℓ(θ0) + Pnℓ(θ0)− Pnℓ(θ̂)︸ ︷︷ ︸
≥0 bc θ̂ is ERM

= (Pn − P )[ℓ(θ0)− ℓ(θ̂)]

≤ |(Pn − P )ℓ(θ0)|+ |(Pn − P )ℓ(θ̂)|
≤ 2 sup

θ∈Θ
|(Pn − P )ℓ(θ)|

= 2 sup
f∈F

|(Pn − P )f | where F := {ℓ(θ) : θ ∈ Θ}

We define: sup |(Pn − P )f | =: ||Pn − P ||F , the Glivenko-Cantelli norm.

4.2 Rademacher Complexity

Rademacher complexity offers a way to upper bound the Glivenko-Cantelli norm, and hence the regret,
of [0, 1]-valued functions. Suppose F consists of [0, 1]-valued functions.

Note that ||Pn − P ||F satisfies the bounded differences property with ci =
1
n because, as in Example 9,

the functions in F are uniformly bounded. By the bounded differences inequality in equation 17:

P (|||Pn − P ||F − E||Pn − P ||F | ≥ t) ≤ 2 exp(− 2t2∑n
i=1 c

2
i

) = 2 exp(−2nt2)

So with high probability, the Glivenko-Cantelli norm ||Pn − P ||F is close to its mean, so it suffices to
study it’s mean E||Pn − P ||F . So bounding E||Pn − P ||F also provides a bound on ||Pn − P ||F .

Before we provide bounds on this quantity, we define a Rademacher process and Rademacher complexity,
quantities that will appear in our resulting bounds.

Definition 8 (Rademacher Process, Rademacher Complexity).
The Rademacher Process: Rn : F → R is defined as:

Rn(f) :=
1

n

n∑
i=1

ϵif(Xi)

Where ϵi
iid∼ Rademacher, meaning:

ϵi =

{
+1 w.p. 1

2

−1 w.p. 1
2

The Rademacher Complexity is just the expetcation of the supnorm of a Rademacher process:

E||Rn||F := E

[
sup
f∈F

|Rn(f)|

]
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Theorem 11 (Bounding the GC norm via Rademacher Complexity). Suppose F is a collection of [0, 1]-
valued functions. Then with probability at least 1− 2 exp(−2nt2), it holds that

1

2
E||Rn||F −

√
log 2

2n
− t ≤ E||Pn − P ||F − t

≤ ||Pn − P ||F
≤ E||Pn − P ||F + t

≤ 2E||Rn||F + t

(20)

Proof : The upper bound we achieve via a symmetrization argument using a ghost sample. Suppose

X1, . . . , Xn
iid∼ P be the sample and X ′

1, . . . , X
′
n

iid∼ P be the ghost sample.

E[||Pn − P ||F ] = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− EP (f(X
′
i))

∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣E
[
1

n

n∑
i=1

f(Xi)− f(X ′
i)
∣∣∣X1, . . . , Xn

] ∣∣∣∣∣
]

≤ E

[
E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− f(X ′
i)

∣∣∣∣∣ ∣∣∣X1, . . . , Xn

]]
(Jensen)

= E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− f(X ′
i))

∣∣∣∣∣
]

To get rid of the ghost sample, introduce independent Rademacher noise into the sum. Since X ′
i and Xi are

exchangeable, we can flip the sign on their difference and still preserve equality of expectation:

E[||Pn − P ||F ] ≤ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− f(X ′
i))

∣∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵi(f(Xi)− f(X ′
i))

∣∣∣∣∣
]

≤ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵif(Xi)

∣∣∣∣∣
]
+ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵif(X
′
i)

∣∣∣∣∣
]

(triangle ineq)

≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵif(Xi)

∣∣∣∣∣
]

(b/c iid)

= 2E||Rn||F
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We achieve the lower bound via desymmetrization, i.e., removing the Rademacher RVs.

E||Rn||F ≤ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵi(f(Xi)− Pf)

∣∣∣∣∣
]

︸ ︷︷ ︸
(i)

+E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵiPf

∣∣∣∣∣
]

︸ ︷︷ ︸
(ii)

(i) = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵi(f(Xi)− Pf)

∣∣∣∣∣
]

≤ E

[
sup
f∈F

∣∣∣∣ 1n∑ ϵi(f(Xi)− f(X ′
i))

∣∣∣∣
]

= E

[
sup
f∈F

∣∣∣∣ 1n∑(f(Xi)− f(X ′
i))

∣∣∣∣
]

≤ 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

(f(Xi)− Pf)

∣∣∣∣∣
]

(Triangle)

= 2E||Pn − P ||F

(ii) = E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

ϵiPf

∣∣∣∣∣
]

= E

[
sup
f∈F

|Pf |

∣∣∣∣∣ 1n
n∑

i=1

ϵi

∣∣∣∣∣
]

= ||P ||F︸ ︷︷ ︸
≤1

·E


∣∣∣∣∣ 1n

n∑
i=1

ϵi

∣∣∣∣∣︸ ︷︷ ︸
Sub-G


≤
√

2 log 2

n

Therefore:

1

2
E||Rn||F −

√
log 2

2n
≤ E||Pn − P ||F

Then given the bounded differences inequality, ||Pn−P ||F deviates absolutely from it’s expectation by more
than t with probability at most 1− 2 exp(−2nt2). Plugging in the bounds on the expectation term gives the
desired result.

4.3 VC dimension

Rademacher Complexity provided some bounds on the regret of functions that map to [0, 1]. But what
about more general classes of functions? VC dimension provides an alternative framework to bound the
regret of classes of functions.

Definition 9 (Projection, Shattering, Growth Function, VC dim/index).
Let F be a class of functions that map X → {0, 1}. For (x1, . . . , xn) ∈ Xn, the projection of F onto
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xn1 := (x1, . . . , xn) is denoted as:

Fxn
1
:= {(f(x1), . . . , f(xn)) : f ∈ F}

We say F shatters xn1 if it can accommodate every possible 0-1 labelling of the n points, i.e., |Fxn
1
| = 2n.

The growth function of F is defined as the maximum cardinlity that the projection can take across all xn1 in
the domain:

ΠF (n) := sup
xn
1 ∈Xn

|Fxn
1
|

The VC dimension is simply the largest natural number input n for which xn1 is shattered by F . The VC
index is the smallest natural number n for which xn1 cannot be shattered by F :

V Cdim(F) := sup {n ∈ N : ΠF (n) = 2n}
V Cind(F) := sup {n ∈ N : ΠF (n) < 2n}

Definition 10 (VC dim for R-valued functions).
Suppose F consist of X → R functions. The VC dimension of F consists of the collection of subgraphs:

A := {{(x, t) ∈ X × R : t < f(x)} : f ∈ F}

We can also upper bound the VC dimension via the number of operations needed to compute f :

Theorem 12 (Upper bound VC dim by no. operations).
Consider a parameterized family of functions F where f(x, θ) for θ ∈ Rp and f : Rm×Rp → {0, 1}. Suppose
f can be computed using no more than t operations that are either arithmetic (+,−,÷,×) or comparisons
(>,≥, <,≤,=, ̸=). Then:

V C(F) ≤ 4p(t+ 2)

Let’s return to the case of boolean-valued functions. We know the empirical process term which bounds
the regret is upper bounded by the Rademacher complexity. Turns out, we can upper bound the Rademacher
complexity via the growth function, and the order of the growth function allows us to stochastically bound
the empirical process term and therefore the regret!

Theorem 13 (Finite Class Lemma).
If F is a class of functions x→ [−1, 1], then:

E||Rn||F ≤
√

2 log(2E|Fxn
1
|)

n
(21)

Proof : To establish the desired result, we instead establish the result condition on the data Xn
1 = xn1 :

E [||Rn||F |Xn
1 = xn1 ] ≤

√
2 log(2|Fxn

1
|)

n
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Suppose z ∈ [−1, 1]n, ϵ ∈ Rademachern, and ⟨ϵ, z⟩ =
∑n

i=1 ϵizi. Let:

Zxn
1
= Fxn

1
∪
(
−Fxn

1

)
Define:

exp

{
λE

[
sup
f∈F

|⟨ϵ, f(xn1 )⟩|

]}
= exp

{
λE

[
sup

z∈Zxn
1

⟨ϵ, z⟩

]}

≤ E

[
exp{λ sup

z∈Zxn
1

⟨ϵ, z⟩}

]
(Jensen)

= E

[
sup

z∈Zxn
1

exp{λ⟨ϵ, z⟩}

]
(Monotonicity)

≤
∑

z∈Zxn
1

E [exp(λ⟨ϵ, z⟩)]

Note that since ϵizi is bounded in [−1, 1], the random variable is sub-G with parameter 1 by Hoeffding.
Thus, the iid sum ⟨ϵ, z⟩ is sub-G with parameter n. Also note that the above expression is a sum of MGFs
of ⟨ϵ, z⟩. By the definition of a sub-G random variable:

E [exp(λ⟨ϵ, z⟩)] ≤ exp

(
λ2n

2

)
=⇒

∑
z∈Zxn

1

E [exp(λ⟨ϵ, z⟩)] ≤
∑

z∈Zxn
1

exp

(
λ2n

2

)

= |Zxn
1
| exp

(
λ2n

2

)
hence by taking logs we obtain:

E

[
sup
f∈F

|⟨ϵ, f(xn1 )⟩|

]
≤

log |Zxn
1
|

λ
+
λn

2

Plugging in λ =
√
2 log |Zxn

1
|/n gives us:

E

[
sup
f∈F

|⟨ϵ, f(xn1 )⟩|

]
≤ nλ

(
log |Zxn

1
|

nλ2
+

1

2

)
≤ nλ =

√
2n log 2|Fxn

1
|

E [||Rn||F |Xn
1 = xn1 ] =

1

n
E

[
sup
f∈F

|⟨ϵ, f(xn1 )⟩|

]
=

√
2 log 2|Fxn

1
|

n

A very simple extension of the finite class lemma gives us an upper bound on the expectation of the
Glivenko-Cantelli norm in terms of the growth function:

Theorem 14 (Upper bounding GC norm via growth function).
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Suppose F consists of a class of Boolean-valued functions:

E||Pn − P ||F ≤ 2

√
2 log(2ΠF (n))

n
(22)

This result is achieved by upper bounding E|Fxn
1
| with ΠF (n) = sup

xn
1

|Fxn
1
| in the preceding theorem. Note

that this bound is trivial, i.e., does not shrink with n → ∞, when ΠF (n) = 2n. But if n > V C(F), then
ΠF (n) < 2n.

This theorem illustrates that the bound on the expectation of the empirical process term when n ≤
V C(F). The bound is useful when n > V C(F). But the question of how much smaller ΠF (n) is than 2n is
formalized by Sauer’s Lemma.

Theorem 15 (Sauer’s Lemma).

Let d ≥ V C(F). It holds that ΠF (n) ≤
∑d

k=0

(
n
k

)
, hence:

ΠF (n) ≤

{
2n n ≤ d(
e
d

)d · nd n > d
(23)

Thus, when n > V C(F), the growth function goes from exponential order to polynomial order.
This implies that if V C(F) ≤ d ≤ n, then by combining with equation 22:

E||Pn − P ||F ≤ 2

√
2 log 2 + 2d log( edn)

n

= O

(√
log n

n

) (24)

4.4 Bracketing Numbers

In the previous section, we motivated bounding E||Pn −P ||F by controlling the regret of Empirical Risk
Minimizers. The main bound given by Equation 24 (Sauer’s Lemma) focuses on the case where F is a
Boolean-valued function, allowing us to provide regret guarantees for classification problems. How about in
the more general cases: such as maximum likelihood or regression problems! This motivates the need for a
new framework to bound E||Pn − P ||F for non-boolean valued functions!

Definition 11 (Lr(P ) space).
Let F be a subset of Lr(P ) space. For r ≥ 1, Lr(P ) is a space of functions f : X → R s.t.

||f ||Lr(P ) :=

[∫
|f(x)|rdP (x)

]1/r
<∞

When r = ∞, Lr(P ) consists of f : X → R s.t.

||f ||L∞(P ) := inf{a ∈ R : P (|f(x)| > a) = 0}

Also note that ||f ||Lr(p) is non decreasing in r.
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Definition 12 (Bracketing numbers).
Given two functions ℓ : X → R, u : X → R in Lr(P ), a bracket, [ℓ, u] is the set of functions f with ℓ < f < u
pointwise.

We call [ℓ, u] an ϵ-bracket if ||u− ℓ||Lr(P ) ≤ ϵ.
We define the Bracketing number of F , N[](ϵ,F , Lr(P )) to be the minimal number of ϵ-brackets needed

to cover F :

N[](ϵ,F , Lr(P )) := inf{m : F ⊂ ∪m
j=1[ℓj , uj ] s.t. ||ℓj − uj ||Lr(P ) ≤ ϵ ∀ j = 1, . . . ,m} (25)

Why are we interested in bracketing numbers? Turns out, finite bracketing numbers give us the asymp-
totic behavior of the empirical process/GC-norm via the Glivenko-Cantelli theorem:

Theorem 16 (Glivenko-Cantelli).
If F is a function class with finite bracketing number, N[](ϵ,F , Lr(P )) < ∞ for all ϵ > 0, then F is P-
Glivenko-Cantelli meaning:

||Pn − P ||F = oP (1) (26)

Proof : to be continued

4.5 Covering and Packing Numbers

Now we introduce the concepts of covering and packing numbers. We first introduce them, define the
relationships between them, and then illustrate their connection to bounding the empirical process term of
interest, E||Pn − P ||F .

Definition 13 (Pseudometric/Pseudometric Space).
A function d : S × S → [0,∞) is called a pseudometric on S if:

1. d(x, x) = 0 for all x ∈ S

2. d(x, y) = d(y, x) for all x, y ∈ S

3. d(y, z) = d(x, y) + d(x, z) for all x, y, z ∈ S

In contrast to a metric, d(x, y) = 0 even if x ̸= y.
A pseudometric space (S, d) is the pairing of set S with a pseudometric d.
A useful example of a psuedometric space is (F , d) where d(f, g) := ||f−g||Lr(P ) (a pseudometric because

f, g can disagree outside the support P .

Definition 14 (Covering number).
Let (S, d) denote a pseudometric space and T ⊂ S. A set T1 is called an ϵ-cover of T if for each θ ∈ T , there
exists θ1 ∈ T1 such that d(θ, θ1) ≤ ϵ. I.e., for every element in T , we can find a corresponding element in
T1 that is at most ϵ away. I.e., T1 is a colection of points such that if we drew ϵ-balls about them, the balls
would cover all of T .
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An ϵ-covering number is defined as the size of the minimal ϵ-cover:

N(ϵ, T, d) = {|T1| : T1 is an ϵ-cover of T} (27)

Definition 15 (Packing numbers).

A set T1 ⊂ T is called an ϵ-packing of T if for each distinct θ1, θ
′∈T
1 :

d(θ1, θ
′
1) > ϵ

I.e., if we draw balls centered at the elements of T1, the balls will contain the other points in T1 (each ball
contains exactly one element of T1). An ϵ-packing number of T is defined as:

M(ϵ, T, d) := sup{|T1| : T1 is an ϵ-packing of T} (28)

Theorem 17 (Relationship between covering and packing numbers).
Let N denote a covering number and M denote a packing number:

M(2ϵ) ≤ N(ϵ) ≤M(ϵ) ∀ϵ > 0 (29)

Proof

1. Prove M(2ϵ) ≤ N(ϵ): Consider T1, an ϵ-cover, and T2, a 2ϵ-packing of T . Because T2 is a 2ϵ-packing,
any two elements θ2, θ

′
2 ∈ T2 cannot be within ϵ of a common point θ ∈ T , because then:

d(θ2, θ
′
2) ≤ d(θ2, θ) + d(θ′2, θ) ≤ 2ϵ

Contradicting that T2 is a 2ϵ-packing. Hence ∀ θ1 ∈ T1, there can be no more than one θ2 ∈ T2 that
is within ϵ of θ1 (otherwise, we would have two elements of T2 within ϵ of a point in T , which we just
showed is not possible). Hence, |T2| ≤ |T1|. Since choices of T1 and T2 were arbitrary, pick the smallest
T1 and largest T2 to obtain:

M(2ϵ) ≤ N(ϵ)

2. Prove N(ϵ) ≤ M(ϵ): Consider an ϵ-packing of size M(ϵ), T2. The goal will be to show that this
ϵ-packing is also an ϵ-cover. Fix θ ∈ T and the goal is to show there exists a θ2 ∈ T2 s.t., d(θ2, θ) ≤ ϵ,
implying T2 is a cover. In case 1, suppose θ ∈ T2, in this case, let θ2 = θ =⇒ d(θ2, θ) = 0. In case 2,
suppose θ /∈ T2. Since T2 is maximal, it must be the case that T2∪{θ} is not an ϵ-packing of T because
T2 is the maximal packing. Hence, there exists distinct θ2, θ

′
2 ∈ T ∪ {θ} s.t. d(θ2, θ

′
2) ≤ ϵ. Because T2

is an ϵ-packing, one of θ2 and θ′2 must equal θ. Hence, there exists θ2 ∈ T2 s.t. for general θ ∈ T :

d(θ2, θ) ≤ ϵ =⇒ N(ϵ) ≤M(ϵ)

Example 11 (Functions Lipschitz in Indexing parameter).
Let f : X ×B → R be a function and:

F := {x→ f(x, β) : β ∈ B}
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And let || · ||β , || · ||F denote the norms on B and F . Suppose the following Lipschitz condition holds, there
exists an L > 0 s.t. ∀β1, β2 ∈ B:

||f(·, β1)− f(·, β2)||F ≤ L||β1 − β2||B

Then we can bound the covering number on F (a hard quantity) by the covering number for the index set
(an easier thing):

N(ϵ,F , || · ||F ) ≤ N
( ϵ
L
,B, || · ||B

)
Proof : Start on the right and and come up with a minimal cover! Let {βj}nj=1 denotes a minimal ϵ/L-cover

of B. Let n = N
(
ϵ
L , B, || · ||B

)
denote the covering number. We’ll show that {f(·, βj)}nj=1 is an ϵ-cover for

F , completing the proof. For some g ∈ F , g = f(·, β). Since {βj}nj=1 is a cover, ||β − βj ||B ≤ ϵ
L . Now via

the Lipschitz condition:

||f(·, β)− f(·, βj)||F ≤ L||β − βj ||B

≤ L · ϵ
L

≤ ϵ

Thus, {f(·, βj)}nj=1 is an ϵ-cover for F , so the equality holds.

Theorem 18 (Relation between Bracketing and Covering Numbers).
Let F ⊂ Lr(P ), r ∈ [1,∞]. For ϵ > 0, the following bound holds:

N[](2ϵ,F , Lr(P )) ≤ N(ϵ,F , || · ||∞) (30)

Proof : Start with the thing on the left and create a minimal ϵ-cover. Then exhibit that it produces a
bracketing. Let {fj}nj=1 denote a minimal ϵ-cover of F s.t., n = N(ϵ,F , || · ||∞). For each j = {1, . . . , n}
define a 2ϵ-bracket:

[fj − ϵ, fj + ϵ]

B/c {fj}nj=1 covers F , it holds that:

F ⊂
n⋃

i=1

[fj − ϵ, fj + ϵ]

Thus, {[fj − ϵ, fj + ϵ]}nj=1 is a 2ϵ-bracket for F , thus, the minimal bracket must have size smaller than n.

Example 12 (Class of Lipschitz functions have stochastically bounded covering number/metric entropy).
Let F denote a collection of functions {f : [0, 1] → [0, 1]} for which there exists L > 0 s.t. for all x1, x2 ∈ [0, 1]:

|f(x1)− f(x2)| ≤ L|x1 − x2|

Let || · ||∞ denote the supremum norm s.t. ||f ||∞ := sup
x
|f(x)|. Turns out the metric entropy is stochastically

bounded:
logN(ϵ,F , || · ||∞) = O(L/ϵ) (31)
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4.6 Upper bounding the Rademacher Complexity

How do we connect the notion of covering and packing numbers to estimation tasks of interest? Recall
that to control the regret of an Empirical Risk Minizer, it’s enough to control:

Regret(θ̂) ≤ 2sup
f∈F

|(Pn − P )f | := 2E||Pn − P ||F ≤ 2(2||Rn||F ) (By Eq: 20)

Thus, the goal is that upper bounding the Rademacher complexity is tantamount to upper bounding
the GC-norm which is tantamount to upper bounding the regret of an ERM. To link the covering/packing
numbers to these quantities of interest, we must invoke some stochastic process results.

Definition 16 (Stochastic Process, sub-G process).
A stochastic process {Xθ : θ ∈ T} is a collection of random variables. A stochastic process is a sub-Gaussian
process with respect to pseudometric d if:

1. Mean zero: E[Xθ] = 0.

2. Gaussian bound on Cumulant generating function of differences: for all θ, θ′ ∈ R and λ ∈ R:

logE[exp(λ(Xθ −Xθ′))] ≤ λ2d(θ, θ′)2

2

i.e., ∀θ, θ′ ∈ T , (Xθ −X ′
θ) is sub-G with parameter d(θ, θ′)2

Example 13 (Canonical Rademacher Process is sub-G).
Let S = Rn and d := || · ||2 be the Euclidean norm. Let T ⊂ S denote the index set and r := (r1, . . . , rn)
denote iid Rademacher random variables. The canonical Rademacher process, {Xθ : θ ∈ T}, is defined as:

Xθ =

n∑
i=1

θiri = ⟨θ, r⟩ (32)

The canonical Rademacher process is sub-G because Rademacher random variables are sub-G (bounded),
and the sum of sub-G variables are also sub-G.

The following Finite class lemma upper bounds the maximum deviation of a sub-G process. Turns out,
the maximum deviation of a sub-G process only scales logarithmically with the size of the index set A. The
Finite Class Lemma will be used to provide an upper bound on the expected supremum of a sub-G process,
which we will later connect to the Rademacher complexity.

Theorem 19 (Finite Class Lemma (for sub-G processes)).
If {Xθ : θ ∈ T} is sub-G wrt d, and A ⊂ T × T is the index set:

E
[

max
(θ,θ′)∈A

(Xθ −Xθ′)

]
≤
√
2 log |A| · max

(θ,θ′)∈A
d(θ, θ′)

≤
√
2 log |A| · max

(θ,θ′)∈T
d(θ, θ′)

=
√
2 log |A| Diameter(T )

(33)
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We now can bound the supremum of a sub-G process using a one discretization bound, which depends
on the covering number!

Theorem 20 (One step discretization bound).
Let {Xθ : θ ∈ T} denote a mean 0, sub-G process with respect to d. Let D := max

(θ,θ′)∈T
d(θ, θ′) denote the

diameter of T . For all ϵ > 0:

E[sup
θ∈T

Xθ] ≤ 2E

[
sup

θ,θ′∈T :d(θ,θ′)≤ϵ

(Xθ −X ′
θ)

]
︸ ︷︷ ︸

1

+2D
√
logN(ϵ, T, d)︸ ︷︷ ︸

2

(34)

Proof : recall that {Xθ : θ ∈ T} is a mean 0 process:

E[sup
θ∈T

Xθ] = E[sup
θ∈T

(Xθ −Xθ′)] (mean 0)

≤ E

[
sup

(θ,θ′)∈T

(Xθ −X ′
θ)

]

Let T1 denote the minimal ϵ-cover for T . Fix θ, θ′ ∈ T and let θ1, θ
′
1 ∈ T1, s.t. d(θ, θ1) ≤ ϵ, d(θ′, θ′1) ≤ ϵ. By

an add-subtract trick we obatin:

Xθ −Xθ′ = (Xθ −Xθ1)− (Xθ −Xθ′
1‘
) + (Xθ1 −Xθ′

1
)

≤ 2 sup
(θ2,θ3)∈T :d(θ2,θ3)≤ϵ

(Xθ2 −Xθ3) + max
(θ4,θ5)∈T

Xθ4 −Xθ5

Combining these two displays yields:

E[sup
θ∈T

Xθ] ≤ 2E

[
sup

(θ2,θ3)∈T :d(θ2,θ3)≤ϵ

(Xθ2 −Xθ3)

]
+ E

[
max

(θ4,θ5)∈T
Xθ4 −Xθ5

]
Notice that the first term matches 1. To show that the second term is upper bounded by 2, we use finite
class lemma:

E
[

max
(θ4,θ5)∈T

Xθ4 −Xθ5

]
≤
√
2 log |T1 × T1| D

≤
√
2 log |T1|2 D

≤ 2
√
N(ϵ, T, d)D (Bc T1 is ϵ-cover)

Now we have all the tools to bound the Rademacher complexity of a class with bounded range symmetric
about zero.

Theorem 21 (Bounding Rademacher Complexity via 1 step discretization bound). Suppose F is a class of
functions with range [−M,M ] then ∀δ > 0:

E||Rn||F ≤ 2δ + 4Mn−1/2sup
Q

√
log(2N(δ,F , L2(Q))) (35)
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Proof : In 3 steps:

1. Relate Rademacher complexity to supremum of sub-G process

2. Applying the one-step discretization bound

3. Find a bound in terms of the covering number of F .

Step 1, Relate Rademacher Process to Supremum of Sub-G Process: Let Zn
1 denote an iid sample from DGD

P . T := FZn
1
∪ −FZn

1
where Fzn

1
= {(f(z1), . . . , f(Zn)) : f ∈ F} is the projection of Zn

1 onto F . Recall the
canonical Rademacher process: {

Xθ =

n∑
i=1

θiri ≡ ⟨θ, r⟩ : θ ∈ T ⊂ Rn

}

Note that we can also define the Rademacher complexity as the expectation of the empirical rademacher
complexity:

E||Rn||F = E
[
E[||Rn||F |Z1

n]
]

hence it is enough to bound the empirical Rademacher complexity for a generic realization of the data:
E[||Rn||F |Zn

1 = zn1 ]:

E[||Rn||F |Zn
1 = zn1 ] := E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Zi)ri

∣∣∣∣∣Zn
1 = zn1

]

=
1

n
E

[
sup
f∈F

|⟨f(zi), ri⟩|

]

=
1

n
E

[
sup

f∈F∪−F
⟨f(zi), ri⟩

]
(B/c |a| = max(a,−a))

=
1

n
E
[
sup
θ∈T

Xθ

]
(By defn T and Xθ is canonical Rademacher process)

Step 2, Apply one-step discretization bound : since Xθ is the canonical rademacher process, it is sub-G with
mean 0, so we can apply the bound in Equation 34.

E
[
sup
θ∈T

Xθ

]
≤ 2E

[
sup

θ,θ′∈T :d(θ,θ′)≤ϵ

(Xθ −X ′
θ)

]
+ 2D

√
logN(ϵ, T, d)

In our cases, d is the Euclidean metric because the Rademacher complexity is sub-G wrt Euclidean metric.
The first term can be written:

2E

[
sup

θ,θ′∈T :d(θ,θ′)≤ϵ

(Xθ −X ′
θ)

]
:= 2E

[
sup

θ,θ′∈T :||θ−θ′||2≤ϵ

⟨θ − θ′, r⟩

]

≤ E

[
sup

ν∈Rn:||ν||2≤ϵ

⟨ν, r⟩

]

= E
[
⟨ν :=

ϵr

||r||
, r⟩
]

(Dot product maximized by same direction)

= ϵE[||r||2]
= ϵ

√
n
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Implying when combined with step 1:

E[||Rn||F |Zn
1 = zn1 ] ≤

1

n

(
2ϵ
√
n+ 2D

√
logN(ϵ, T, || · ||2)

)
Step 3: find covering number wrt F , not T . To do this we need to relate the covering number of T := F∪−F
to the covering number of F . Fix two θ1, θ2 ∈ T , then there exist f1, f2 ∈ F∪−F s.t. θ1 = (f1(z1), . . . , f1(zn))
and θ2 = (f2(z1), . . . , f2(zn)). Hence,

||θ1 − θ2||2 =

√√√√ n∑
i=1

[θ1i − θ2i]2

=

√√√√ n∑
i=1

[f1(zi)− f2(zi)]2

= n1/2

√√√√ 1

n

n∑
i=1

[f1(zi)− f2(zi)]2

= n1/2||f1 − f2||L2(Pn) < ϵ

=⇒ ||f1 − f2||L2(Pn) < ϵn−1/2

Where Pn denotes the empirical distribution of Zn
1 . Thus,

N(ϵ, T, || · ||2) = N(ϵ n−1/2,F ∪ −F , L2(Pn))

Plugging into the result from step 2 and sup-ing out the random quantity Pn:

E[||Rn||F |Zn
1 = zn1 ] ≤ 2ϵn−1/2 + 2Dn−1

√
logN(ϵ n−1/2,F ∪ −F , L2(Pn))

≤ 2ϵn−1/2 + 2Dn−1sup
Q

√
logN(ϵ n−1/2,F ∪ −F , L2(Q))

Now we focus on the diameter! Since in F , the range is contained in [−M,M ]:

Dzn
1
= sup

(θ1,θ2)∈Fzn1
∪−Fzn1

||θ1 − θ2||2

= sup
f1,f2∈F∪−F

||f1(zn1 )− f2(z
n
1 )||2

= sup
f1,f2∈F∪−F

√√√√ n∑
i=1

[f1(zi)− f2(zi)]2

≤
√
4M2n = 2Mn1/2

Now we focus on getting the covering number in terms of F . Suppose T1 is a minimal ϵ-cover for F . Let
|T1| = N(ϵ,F , L2(Pn)).
Propose the following set T2 := T1 ∪ −T1 s.t. |T2| ≤ 2N(ϵ,F , L2(Pn)). Clearly, since T1 ⊂ T2, T2 is an
ϵ-cover for F . Now we show it’s also an ϵ-cover for −F , hence a cover for the union. For any f ∈ F ,
∃ t ∈ T1 s.t. ||t − f ||L2(Pn) < ϵ. For any general −f ∈ −F , there also exists t ∈ −T1 ⊂ T1 ∪ −T1 s.t.
||(−t)− (−f)||L2(Pn) ≡ ||t− f ||L2(Pn) < ϵ. Thus, T2 is an ϵ-cover for F ∪ −F :

N(ϵ,F ∪ −F , L2(Pn)) ≤ 2N(ϵ,F , L2(Pn))

Letting δ := ϵn−1/2 and replacing the covering number, we obtain our result:

E[||Rn||F ] = E[||Rn||F |Zn
1 = zn1 ] ≤ 2δ + 4Mn−1/2sup

Q

√
log 2N(δ,F , L2(Q))
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Dudley observed that in the 1-step discretization bound, the latter term could be replaced by a term
that did not diverge as δ → 0 under some appropriate conditions. This result has a special application to
studying the Rademacher complexity:

Theorem 22 (Dudley’s Entropy Integral).
Let {Xθ : θ ∈ T} denote a mean-0 sub-G process with respect to pseudometric d. Let D denote the diameter.
For any ϵ > 0:

E
[
sup
θ∈T

Xθ

]
≤ E

[
sup

θ,θ′:d(θ,θ′)≤ϵ

(Xθ −X ′
θ)

]
+ 8

∫ D

ϵ/2

√
log(N(ϵ̃, T, d))dϵ̃ (36)

If {Xθ : θ ∈ T} is the canonical Rademacher process:

E
[
sup
θ∈T

Xθ

]
≤ 8

∫ D

0

√
log(N(ϵ̃, T, d))dϵ̃ (37)

And the bound is not vacuous when the integral is finite, i.e., logN(ϵ) = Cϵ−r for r < 2.

Proof : Let T1 denote a minimal ϵ-cover of T . For a general θ ∈ T , let θ1 be s.t d(θ1, θ) ≤ ϵ. Then we have
teh following:

Xθ = (Xθ −Xθ1) +Xθ1

≤ sup
θ′,θ̃′:d(θ′,θ̃′)≤ϵ

(Xθ′ −Xθ̃′) + sup
θ̃1∈T1

Xθ̃1

=⇒ E
[
sup
θ∈T

Xθ

]
≤ E

[
sup

θ′,θ̃′:d(θ′,θ̃′)≤ϵ

(Xθ′ −Xθ̃′)

]
+ E

[
sup
θ̃1∈T1

Xθ̃1

]
(Expectations and sup on LHS)

Note that LHS and first term on RHS are equivalent to Dudley’s entropy. We just need to show:

E

[
sup
θ̃1∈T1

Xθ̃1

]
≤ 8

∫ D

ϵ/2

√
N(ϵ̃, T, d)dϵ̃

Recall the finite class lemma from Equation 33: for A ⊂ T × T

E
[

max
(θ,θ′)∈A

(Xθ −Xθ′)

]
≤
√
2 log |A| · max

(θ,θ′)∈A
d(θ, θ′)

≤
√
2 log |A| · max

(θ,θ′)∈T
d(θ, θ′)︸ ︷︷ ︸

Diameter

Let’s leverage the FCL more by constructing an A to work with such that the maximum is much smaller
than D. Consider the following telescoping sum for k ∈ N:

Xθ1 = Xθk +

k−1∑
i=1

(Xθj −Xθj+1
)

(j=1 display): Let T1 and T2 denote ϵ and 2ϵ-covers of T respectively. For general elements θ1 ∈ T1 and
θ2 ∈ T2, d(θ1, θ2) ≤ 2ϵ, and consider f2 : T1 → T2, i.e., θ2 = f2(θ1) ∈ T2 s.t. d(θ1, θ2) ≤ 2ϵ. Define the set:

A1 = {(f2(θ1), θ1) : θ1 ∈ T1} s.t. max
(θ,θ′)∈A1

d(θ, θ′) ≤ 2ϵ

And since A1 ⊂ T2 × T1:

log |A1| ≤ log |T2 × T1|
≤ log(N(2ϵ)N(ϵ))

≤ 2 logN(ϵ)
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By FCL:

E

[
sup

(θ,θ′)∈A1

(Xθ −Xθ′)

]
≤ 2ϵ

√
2 · 2 log(N(ϵ)) = 4ϵ

√
log(N(ϵ))

(general j display): Recall the telescoping sum:

Xθ1 = Xθk +

k−1∑
i=1

(Xθj −Xθj+1)

≤ Xθk + max
(θ,θ′)∈A1

(Xθ′ −Xθ) +

k−1∑
j=2

(Xθj −Xθj+1
)

Then take an expectation and apply the FCL lemma to control the second term. To control the third term,
we iterate! We consider elements in the ϵ-cover, 2ϵ-cover, 4ϵ-cover, . . ..
Formally, for j = 1, . . . , k − 1, let fj+1 : Tj → Tj+1 where Tj is the 2j−1ϵ-cover and Tj+1 is the 2jϵ-cover.
Letting θj+1 = fj+1(θj) and:

d(θj+1, θj) ≤ 2jϵ

We define:

Aj := {(fj+1 ◦ . . . ◦ f2(θ1), fj ◦ . . . ◦ f2θ1) : θ1 ∈ T1}

By identical arguments to the j = 1 case:

E

[
sup

(θ,θ′)∈Aj

(Xθ −Xθ′)

]
≤ 2 · 2jϵ

√
logN(2j−1ϵ)

Note that once 2jϵ ≥ D := sup
(θ,θ′):d(θ,θ′)∈T

d(θ, θ′), a minimal 2jϵ-cover conatins one element. Now choose k to

be minimal s.t. 2k−1ϵ ≥ D. Thus, θk = fk ◦ . . . f2(θ1) does not depend on the value of θ1, since θk can only
take one value. Returning to the telescoping sum, we can obtain an upper bound:

Xθ1 = Xθk +

k−1∑
i=1

(Xθj −Xθj+1
)

≤ Xθk +

k∑
j=1

max
(θ,θ′)∈Aj

[Xθ′ −Xθ]

And via the FCL:

E[Xθ1 ] ≤ E[Xθk ] +

k∑
j=1

E
[

max
(θ,θ′)∈Aj

Xθ′ −Xθ

]

≤ 0 +

k∑
j=1

2 · 2jϵ
√
logN(2j−1ϵ)

= 8

k−1∑
j=1

2j−2ϵ
√

logN(2j−1ϵ)

Heuristic: consider N(ϵ) as function of ϵ. N(ϵ) is a monotontically decreasing step function. Consider the
step between 2j−2ϵ and 2j−1ϵ. The right hand area under the curve is equal to the width of the step (2j−2ϵ)
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times the height (
√
logN(2j−1ϵ)). This quantity lower bounds the integral from these two steps. Thus,

8

k−1∑
j=1

2j−2ϵ
√
logN(2j−1ϵ) ≤ 8

∫ D

ϵ/2

√
logN(ϵ̃)dϵ̃

Where the lower bound of the integral ius derived from the j = 1 case and D denotes the largest distance
permitted in T bc logN(u) = 0 for u ≥ D. Thus, we are done and we have proved Equation 36.

To prove Equation 37 for the Canonical rademacher process, we rely on the simple fact that term 2 can
be written as:

E

[
(θ, θ′) : d(θ, θ′) ≤ ϵ

sup
(Xθ −Xθ′)

]
≤ ϵ

√
n

So combining with the previous part, as we let ϵ→ 0, we obtain:

E
[
sup
θ∈T

Xθ

]
≤ 8

∫ D

0

√
logN(ϵ̃)dϵ̃

Turns out, we can use Dudley’s entropy integral to control the Rademacher Complexity.

Theorem 23 (Controlling Rademacher Complexity via Dudley). Suppose F is a function class from Z → R
and F = −F (closed under negations). Then:

||Rn||F ≤ 8√
n
EPn

[∫ ∞

0

√
logN(ϵ,F , L2(Pn))dϵ

]
≤ 8√

n
sup
Q

[∫ ∞

0

√
logN(ϵ,F , L2(Q))dϵ

]
(38)

Where the sup is over all finitely-supported probability distributions with support in P .
Implying Regret of ERM = O(n−1/2).

Proof :

nE||Rn||F = nEPn [E[||Rn||F |Zn
1 = zn1 ]]

= EPn

[
E

[
sup

θ∈Fzn1

⟨r, θ⟩
∣∣∣Zn

1 = zn1

]]
(Rad complex to Rad process)

≤ EPn

[
8

∫ ∞

0

√
logN(ϵ,F , || · ||2)dϵ

]
(Dudley)

Based on a step in the proof of Equation 35, we replace N(ϵ,Fzn
1
, || · ||2) = N(ϵ/

√
n,F , L2(Pn)).

nE||Rn||F ≤ EPn

[
8

∫ ∞

0

√
logN(ϵ/

√
n,F , L2(Pn))dϵ

]
= 8

√
nEPn

[∫ ∞

0

√
logN(u,F , L2(Pn))du

]
=⇒ E||Rn||F ≤ 8n−1/2EPn

[∫ ∞

0

√
logN(u,F , L2(Pn))du

]
Thus, by Dudley’s entropy integral, we obtain:

E||Rn||F ≤ 8

n
sup
Q

∫ ∞

0

√
logN(u,F , L2(Q))du

≤ 8

n
sup
Q

∫ ∞

0

√
logN(u,F , L2(Q))du
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Below, we’ll give some useful examples:

Example 14 (Rademacher Complexity of Lipschitz Functions).
Let F denote a class of [0, 1] → [0, 1] functions s.t. for all z1, z1 ∈ [0, 1]

|f(z1)− f(z2)| ≤ L|z1 − z2|

We previously saw that logN(ϵ,F , || · ||∞) = O(L/ϵ) and since || · ||L2(Q) ≤ || · ||∞ for all Q:

sup
Q

logN(ϵ,F , L2(Q)) = O(L/ϵ)

E||Rn||F ≤ 8n−1/2sup
Q

[∫ ∞

0

√
logN(u,F , L2(Q))du

]
≤ 8n−1/2

∫ ∞

0

O(L/ϵ)dϵ︸ ︷︷ ︸
<∞

=⇒ E||Rn||F = O(n−1/2)

Now consider the case where d ≥ 2. F is the collection of L-lipschitz functions satisfying:

|f(z1)− f(z2)| ≤ L||z1 − z2||∞∀z1, z2 ∈ [0, 1]d

In this case,

sup
Q

logN(ϵ,F , L2(Q)) = O

[(
L

ϵ

)d
]

Turns out, Equation 38 will not give us finite value for the uniform entropy integral when d ≥ 2. So
instead, we rely on the bound in Equation 36, which gives us slower convergence than n−1/2 rate.

4.7 Upper bounding the empirical process term via bracketing integrals

We start with the definition of an envelope function:

Definition 17 (Envelope function).
An envelope function F for a function class F , is a function that pointwise dominates the absolute value of
every function in the function class: i.e., |f(z)| ≤ F (z) ∀ z ∀ f ∈ F .
Also let ||F ||Q,r := [QF r]1/r

Turns out we can bound the covering number of VC classes of functions, and the upper bound is poly-
nomial in 1/ϵ, meaning that VC classes of functions are relatively small!

Theorem 24 (Covering No. of VC function classes (Lemma 19.15 VdV)).
Special case (r = 2, Envelope function F = 1): Let F denote a collection of VC functions that map from
Z → [−1, 1] and with Vi(F) denoting the VC index. Then it holds that:

sup
Q

N(ϵ,F , L2(Q)) ≤ kVi(F)(16e)Vi(F) ·
(
1

ϵ

)2(Vi(F)−1)

(39)
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General case: Let r ≥ 1. Given an envelope function F on F, a VC class of functions, the following inequality
holds:

sup
Q

N(ϵ||F ||Q,r,F , Lr(Q)) ≤ kVi(F)(16e)Vi(F) ·
(
1

ϵ

)r(Vi(F)−1)

(40)

We can also upper bound the empirical process term (which upper bounds the regret) via the bracketing
integral:

Theorem 25 (Bracketing integral bound on the empirical process term).
For any class of functions mapping from Z to [−1, 1], it holds that

E||Pn − P ||F ≤ c√
n

∫ 1

0

√
logN[](ϵ,F , L2(P )dϵ

For any class with envelope function F :

E||Pn − P ||F ≤ c√
n
||F ||P,2

∫ 1

0

√
logN[](ϵ||F ||P,2,F , L2(P )dϵ

If the bracketing integral is finite, then the bound is not vacuous, and E||Pn − P ||F = O(n−1/2). This also
means that the expected value of the empirical empirical process EGnf := E

√
n(Pn − P )f = O(1) for all

f ∈ F , meaning the empirical process convergence to a tight limit process in F , implying that F is P-Donsker
(see VdV 19.2 (pg 269)).
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5 Useful facts

5.1 Useful inequalities

1. Jensen: if f is convex, f(E(X)) ≤ E(f(X)). If f is concave, E(f(X)) ≤ f(E(X)).

2. Triangle: |a+ b| ≤ |a|+ |b|

3. Reverse triangle: ||a| − |b|| ≤ |a− b|

4. Kolmogorov: tail bound on maximum partial sum. For independentZ1, . . . , Zn with E(Z) = 0,E(Z2
i ) <

∞:

P

{
max

1≤m≤n

∣∣∣∣∣
m∑
i=1

Zi

∣∣∣∣∣ > t

}
≤
∑n

i=1 E(Z2
i )

t2

5.2 Useful analysis results

1. Continuous functions on compact supports are bounded.

2. 1 + x ≤ exp(x)

3. b-th moment for non-negative random variable:

E[Xb] = b

∫ ∞

0

xbP (X > x)dx

4. Infinite series sum:
∑∞

n=0 ar
n = a

1−r

5. Taylor series for etX =
∑∞

b=0
tb

b!X
b

6. Taylor expansion for f about x0:

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

5.3 Useful concentration inequality results

1. Markov inequality is the foundational inequality, but most MGF-based results are based on Chernoff.

2. Sums of sub-G random variables are sub-G.

3. Suppose X1, . . . , Xn are independent variables s.t. E[Xi] = µi and Xi ∈ SE(σ2
i , ai), then:

n∑
i=1

(Xi − µi) ∈ SE(

n∑
i=1

σ2
i ,max

i
ai)

4. Any sub-G random variable with parameter σ2 is also sub-exponential with parameters (σ2, b) for any
b > 0.
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