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1 Probability and Statistics Foundations

1.1 Sample Space and Probability Measure

Definition 1 (Probability miscellany). The sample space Ω is the collection of all possible outcomes of a
random experiment. Elements of the sample space are outcomes. Subsets of the sample space are events.
A1 . . . are pairwise disjoint if Ai ∩Aj = ∅ for all i 6= j. A partition of the sample space is a collection of
pairwise disjoint sets such that ∪∞i=1Ai = Ω.

Definition 2 (σ-algebra). A σ-algebra, F is s collection of subsets satisfying:

(a) Ω ∈ F , ∅ ∈ F

(b) A ∈ F ⇒ Ac ∈ F

(c) A1, A2, . . . ∈ F ⇒ ∪∞i=1Ai ∈ F

The sets in F are said to be measurable and (Ω,F) are a measurable space.

Definition 3 (Probability measure). A measure is a function that takes elements of the σ-algebra and
outputs a real number. The probability measure, P(·) : F → [0, 1], where the number describes the
likelihood of the event.

(a) P(Ω) = 1

(b) P(A) ≥ 0 ∀A ∈ F

(c) For all mutually exclusive events, P
(
∪∞i=1 Ai

)
=
∑∞
i=1 P(Ai)

1.2 Random Variables

Definition 4 (Random variable). A random variable is a function from the sample space, Ω into the real
numbers (C&B 1.4.1 pg 27).

Definition 5 (CDF). Every random variable, X, has a cumulative distribution function, or cdf,
denoted by FX(x) satisfying:

FX(x) = PX(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}), for all x

Note: every cdf is right-continuous (continuous when approached from the right), nondecreasing,
limx→−∞ F (x) = 0 and limx→+∞ F (x) = 1, and completely determines the distribution of X.
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Definition 6 (PMF/PDF). The probability mass function (PMF) describes the distribution of a discrete
RV:

p(x) = P (X = x) = F (x)− F (x−)

The probability density function (PDF) describes the distribution of a continuous RV:

p(x) =
d

dx
F (x)

When X is continuous, the CDF is:

F (x) = P (X ≤ x) =

∫ x

−∞
p(x

′
)dx

′

Theorem 1 (Theorem 1.6.5 (C&B)). A function fX(x) is a pdf (or pmf) of X iff:

(a) fX(x) ≥ 0 for all x

(b)
∑
x fX(x) = 1 for pmf and

∫∞
−∞ fX(x)dx = 1 for pdf

1.3 Common distributions

1.3.1 Discrete

Definition 7 (Bernoulli). If X ∼ Ber(p), then X ∈ {0, 1} and 0 ≤ p ≤ 1 s.t.:

P (X = 1) = p, P (X = 0) = (1− p)

The following are properties of a Bernoulli RV:

Mean: E[X] = p

Variance: Var[X] = p(1− p)
MGF: MX(t) = (1− p) + pet

Definition 8 (Binomial). If X ∼ Bin(n, p), then X = 0, 1, 2, . . .:

P (X = k) =

(
n

k

)
pk(1− p)k

A Bin(n, p) variable is the sum of n Bernoulli trials with probability p. The following are properties of a
Binomial RV:

Mean: E[X] = np

Variance: Var[X] = np(1− p)
MGF: MX(t) = [(1− p) + pet]n
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Theorem 2 (Binomial Theorem). For any real numbers, x, y and integer n ≥ 0

(x+ y)n =

n∑
i=0

(
n

i

)
xiyn−i

Definition 9 (Geometric). If X ∼ Geo(p):

P (X = n) = (1− p)n−1p

for n = 1, 2, 3, . . .. A geometric random variable can be considered the ”number of trials to obtain a success”.
The following are properties of a Geometric RV:

Mean: E[X] =
1

p

Variance: Var[X] =
1− p
p2

MGF: MX(t) =
pet

1− (1− p)et

Definition 10 (Poisson). If X ∼ Poi(λ), X = 0, 1, 2, . . . and:

P (X = k) =
λke−λ

k!

A Poisson RV is often used to model a counting process where we are waiting for an occurrence (i.e., we
assume that probability of arrival for small intervals is proportional to the length of the time interval). The
following are properties of a Poisson RV:

Mean: E[X] = λ

Variance: Var[X] = λ

MGF: MX(t) = eλ(et−1)

Property 1 (Sum of Poisson RVs). Given X1, . . . , Xn ∼ Poisson(λi), and Xi ⊥ Xj for all i 6= j, then

n∑
i=1

Xi ∼ Poisson(

n∑
i=1

λi)

In other words, the sum of independent Poisson RVs are Poisson with rate equal to the sum of the individual
rates.
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Definition 11 (Negative binomial). To model the number of failures before the r-th success (which is
equivalent to the number of trials to achieve a fixed number of success):

P (Y = y) =

(
r + y − 1

y

)
pr(1− p)y, y = 0, 1, . . .

where (
r + y − 1

y

)
= (−1)y

(
−r
y

)
The following are properties of a NB RV:

Mean: E[Y ] = r
1− p
p

Variance: Var[Y ] = r
1− p
p2

MGF: MY (t) =

(
p

1− (1− p)et

)r

1.3.2 Continuous

Definition 12 (Uniform). If X ∼ Unif[a, b] is a continuous RV over [a, b] then:

p(x) =
1

b− a
I(a ≤ x ≤ b)

The following are properties of a Uniform RV:

Mean: E[X] =
b+ a

2

Variance: Var[X] =
(b− a)2

12

MGF: MX(t) =
ebt − eat

(b− a)t

Property 2 (Minimum of many uniforms). Consider X1, . . . , Xn ∼ Unif[0, 1] and U = n ·min{X1, . . . , Xn}.
Then:

1− FU (u) = P (min{X1, . . . , Xn} >
u

n
) =

n∏
i=1

P
(
Xi >

u

n

)
=

(
1− u

n

)n
→ e−u

FU (u) = 1− e−u & fU (u)→ e−u = Exp(1)

Property 3 (Uniform in n-dimensions). A distribution that is uniform across an n-dimensional box has
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marginals that are independent and uniform. When X and Y are associated, the marginals are uniform but
not independent.

Consider the case where (X,Y) is uniform over D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Then pY |X =
Unif[0, 1]. Now consider when (X,Y) is uniform over D = {(x, y) : x ≥ 0, y ≥ 0, x + y ≤ 1}. pY |X will be

Unif[0, 1−X] =⇒ pY |X(y|X) = 1
1−xI(0 ≤ y ≤ 1− x)

Definition 13 (Normal). If X ∼ N(µ, σ2):

p(x) =
1√

2πσ2
e
−(x−µ)2

2σ2

The following are properties of a Normal RV:

Mean: E[X] = µ

Variance: Var[X] = σ2

MGF: MX(t) = eµt+
σ2t2

2

Property 4 (Properties of Normal RV). Here are some properties of Normal random variables:

1. For X ∼ N(µ1, σ
2
1) and Y ∼ N(µ2, σ

2
2) independent, and a1, a2 ∈ R, a1X + a2Y ∼ N(a1µ1 +

a2µ2, a
2
1σ

2
1 + a2

2σ
2
2)

2. For X1, . . . , Xn IID normal from N(µ,Σ2), then X̄n ∼ N(µ, σ2/n)

3. Let X1, . . . , Xn
iid∼ N(0, 1). Then Z1 = X2

1 follows a χ2 distribution with df=1. And Zn =
∑n
i=1X

2
i

follows a χ2 distribution with df=n.

4. Stein’s Lemma: is useful for calculating higher order moments of normal distributions. For X ∼
N(θ, σ2):

E(g(X)(X − θ)) = σ2E[g′(X)]

In action: : E[X3] = E(X2(X − θ + θ)

= E[X2(X − θ)] + θE[X2]

= 2σ2E[X] + θ(σ2 + θ2)

= 3σ2θ + θ3

Definition 14 (Exponential). If X ∼ Exp(λ), then X ∈ [0,∞):

p(x) = λe−λxI(x ≥ 0)

7
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The following are properties of an Exponential RV:

Mean: E[X] =
1

λ

Variance: Var[X] =

(
1

λ

)2

MGF: MX(t) =
1

1− t
λ

, t < λ

Property 5 (Memoryless property). Given X ∼ Exp(λ):

P (X > x+ y|X > x) =
P ({w : X(w) > x+ y,X(w) > x)}

P ({x : X(w) > x})

=
P (X > x+ y)

P (X > x)

=
1− P (X < x+ y)

1− P (X < x)
(CDF: P (X < x) = F (x) = 1− eλx)

=
e−λ(x+y)

e−λx

= e−λy = P (X > y)

This is the memoryless property, as the probability of X > x+ y depends only on the increment y, not on x.

Property 6 (Abs. Difference, Minimum, and Ratio). Consider exponential RVs:

(a) Consider X,Y ∼ Exp(1). For U = |X − Y |, U ∼ Exp(1) (another memoryless property)

(b) For X1, . . . , Xn ∼ Exp(λ), U = min{X1, . . . , Xn} ∼ Exp(nλ)

(c) Consider X,Y ∼ Exp(1). For U = X
X+Y , then U ∼ Unif[0, 1]

Definition 15 (Cauchy). If X ∼ Cauchy(µ, σ2):

p(x) =
1

πσ

1

1 + (x− µ)2/σ2

The following are properties of a Cauchy RV:

Mean: Does Not Exist

Variance: Does Not Exist

MGF: Does Not Exist
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Definition 16 (Gamma). If X ∼ Gamma(α, λ) s.t. X ≥ 0 and α, λ, β > 0:

p(x) =
λα

Γ(α)
xα−1e−λxI(x ≥ 0) =

1

Γ(α)βα
xα−1e−x/β

Where Γ(α) = (α− 1)! The following are properties of an Gamma RV:

Mean: E[X] =
α

λ
= αβ

Variance: Var[X] =
α

λ2
= αβ2

MGF: MX(t) =

(
1

1− t
λ

)α
, t < λ MX(t) =

(
1

1− βt

)α
t <

1

β

Property 7 (Sum of independent Gammas). For X1, . . . , Xn independent and Xi ∼ Gamma(αi, β), and
T =

∑n
i=1Xi, the distribution of T is:

T ∼ Gamma(

n∑
i=1

αi, β)

Definition 17 (Beta). If X ∼ Beta(α, β) s.t. X ∈ [0, 1]:

p(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1I(0 ≤ x ≤ 1)

The following are properties of a Beta RV:

Mean: E[X] =
α

α+ β

Variance: Var[X] =
αβ

(α+ β)2(α+ β + 1)

MGF: MX(t) = 1 +

∞∑
k=1

(
k−1∏
r=0

α+ r

α+ β + r

)
tk

k!

1.4 Joint/Conditional Probability/CDF/PDF

Definition 18 (Conditional probability). The conditional probability of A given B is:

P (A|B) =
P (A ∩B)

P (B)

9
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Definition 19 (Simpson’s Paradox). Consider you have 3 events, A,B,C. If you know the following:

P (A|B,C) ≥ P (A|BC , C)

P (A|B,CC) ≥ P (A|BC , CC)

Consider A is the event your accepted, B is the event that you’re a female, and C denote your program.
So even though the probability of acceptance given female and program is higher than the probability of
acceptance given male and program, this does not imply that probability of acceptance given you’re female is
higher than the probability of acceptance given you’re a male: i.e., we cannot conclude P (A|B) ≥ P (A|BC)

Definition 20 (Joint and Conditional CDF). Given two random variables, X,Y , their joint CDF:

PXY (x, y) = F (x, y) = P (X ≤ x, Y ≤ y)

The joint pdf:

pXY (x, y) =
∂2F

∂x∂y

The conditional PDF of Y given X = x:

pY |X(y|x) =
pXY (x, y)

pX(x)

Strategy 1 (Solving for conditional pdf). Note that:

pY |X(y|x) =
pXY (x, y)

pX(x)

=⇒ pY |X(y|x) ∝ pXY (x, y) B/c X can be treated as a constant

1.5 Independence

Definition 21 (Independence). Two events are independent if P (A ∩ B) = P (A)P (B) or equivalently
P (A|B) = P (A).

Theorem 3 (Re: Independence). Two events are independent if their joint CDF can be factorized directly
into a product of marginal CDFs:

F (x, y) = P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y)

10
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Definition 22 (Mutual Independence). Many random variables are mutually independent if their joint
CDF/PDF can be factorized into a product of marginals.

1.6 Total Probability and Bayes Theorem

Theorem 4 (Law of Total Probability). The Law of Total Probability says that if B1, . . . , Bk form a
partition of Ω:

P (A) =

k∑
i=1

P (A|Bi)P (Bi)

Theorem 5 (Bayes Rule). The Law of Total Probability says that if A1, . . . , Ak form a partition of Ω:

P (Ai|B) =
P (B|Ai)P (Ai)∑k
j=1 P (B|Aj)P (Bj)

=
P (B|Ai)P (Ai)

P (B)

Theorem 6 (Bayes Theorem). Bayes Theorem generalizes the result of Bayes Rule to RVs.

pX|Y (x|y) =
pXY (x, y)

pY (y)

=
pY |X(y|x)pX(x)

pY (y)

=


pY |X(y|x)pX(x)∫
pY |X(y|x)pX(x)

if continuous
pY |X(y|x)pX(x)∑
x′ pY |X(y|x′)pX(x′) if discrete

1.7 Conditional Independence

Theorem 7 (Conditional independence). For pXY Z a joint pdf/pmf, the following are equivalent:

(a) X ⊥ Y |Z

(b) pXY |Z(x, y|z) = pX|Z(x|z)pY |Z(y|z)

(c) pX|Y Z(x|y, z) = pX|Z(x|z)

(d) pXY Z(x, y, z) = pXZ(x,z)pY Z(y,z)
pZ(z)

The most important ones

(e) pXY Z(x, y, z) = g(x, z)h(y, z) for g, h functions.

(f) pX|Y Z(x|y, z) = w(x, z) for some function w.

11
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Property 8 (Conditional Independence 6⇐⇒ Independence). Consider the case where X,Y ∼
Unif[0, 1]2 =⇒ X ⊥ Y . But let Z = 1 if x2 + y2 ≤ 1, so XY |Z.

Next, consider the case that X,Y |Z = 1 ∼ Unif[0, 1]2, X,Y |Z = 0 ∼ Unif[2, 3]2. X ⊥ Y |Z but XY

12
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2 Transformations of RVs

2.1 Functions of one RV

Theorem 8 (Theorem 2.1.5 C&B). Let X have pdf fX(x) and let Y = g(X), where g is monotone. Suppose
fX(x) is continuous on X and g−1(y) has a continuous derivative on Y. Then pdf of Y is:

fY (y) =

fX(g−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣ y ∈ Y

0 else

Theorem 9 (Theorem 2.1.8 C&B). Let X have pdf fX(x) and let Y = g(X), where g is monotone. Suppose
there exists a partition, A0, . . . , Ak of the sample space, X s.t. P (X ∈ A0) = 0 and fX is continuous on each
Ai. Suppose there exist functions g1(x), . . . , gk(x) defined on A1, . . . , Ak respectively s.t.

(a) g(x) = gi(x)∀x ∈ Ai

(b) gi(x) is monotone on Ai

(c) Y = {y : y = gi(x) for some x ∈ Ai} is the same for each i = 1, . . . , k.

(d) g−1
i (y) has a continous derivative on Y for each i = 1, . . . , k.

Then:

fY (y) =


∑k
i=1 fX(g−1

i (y))

∣∣∣∣ ddy g−1
i (y)

∣∣∣∣ y ∈ Y

0 else

Theorem 10 (Probability Integral Transform (Thm 2.1.10 C & B)).
Let X have continuous cdf FX(x). Define RV Y = FX(x). Then Y ∼ Unif[0, 1].

Strategy 2 (When in doubt, work out the CDF). Say X ∼ N(0, 1) and Y = X2:

FY (y) = P (Y ≤ y)

= P (X2 ≤ y)

= P (−√y ≤ X ≤ √y)

= FX(
√
y)− FX(−√y)

Then you can differentiate wrt y to get the pdf.

13
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2.2 Functions of two or more RVs

Property 9 (Max of many independent RVs). Let U = max{X1, . . . , Xn}. Then:

FU (u) = P (U ≤ u) = P (max{X1, . . . , Xn} ≤ u) = P (X1 ≤ u, . . . ,Xn ≤ u) = P (X1 ≤ u) · . . . P (Xn ≤ u)

Property 10 (Min of many independent RVs). Let U = min{X1, . . . , Xn}. Then:

1− FU (u) = P (min{X1, . . . , Xn} > u) = P (X1 > u, . . . ,Xn > u) = P (X1 > u) . . . P (Xn > u)

FU (u) = 1− P (X1 > u) . . . P (Xn > u)

14
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3 Expectation and moments

3.1 Expectation

Definition 23 (Expected value). The expected value or mean of a random variable, g(X), denoted by
E(g(X)) is:

E(g(X)) =

{∫∞
−∞ g(x)fX(x)dx if X continuous∑
x∈X g(x)fX(x) =

∑
x∈X g(x)P (X = x) if X discrete

Property 11 (Properties of Expectation). The following are some useful properties of expectation:

(a) Decomposable under addition: E
(∑k

j=1 cjgj(X)
)

=
∑k
j=1 cjE(gj(X))

(b) Decomposable under multiplication with independence: if X1, . . . , Xn are independent,
E(
∏n
i=1 gi(Xi)) =

∏n
i=1E(gi(Xi))

Definition 24 (Variance, Covariance, and Pearson’s Correlation). The variance is the second-centered
moment of X. It is also the second uncentered moment minus the square of the first uncentered moment.

Var(X) = E((X − E(X))2)︸ ︷︷ ︸
second centered moment

= E(X2)− (E(X))2︸ ︷︷ ︸
second moment- first moment squared

Given two RV X,Y , their covariance is:

Cov(X,Y ) = E((X − E(X)(Y − E(Y )) = E(XY )− E(X)E(Y )

Given two RV, X,Y , their Pearson’s correlation is:

ρ(X,Y ) =
Cov(X,Y )

σXσY

Note that when X ⊥ Y =⇒ Cov(X,Y ) = ρ(X,Y ) = 0. However, Cov(X,Y ) = ρ(X,Y ) = 0 6=⇒ X ⊥ Y .

Property 12 (Properties of Variance). The following are properties of the variance:

(a) Var(X ± Y ) = Var(X) + Var(Y )± 2Cov(X,Y )

(b) If X ⊥ Y , Var(X ± Y ) = Var(X) + Var(Y )

(c) Var
(∑n

i=1 aiXi

)
=
∑k
i=1 a

2
iVar(Xi) when Xi are independent

(d) Var(X + Y ) = Var(X) + Var(Y )− 2Cov(X,Y ) when X,Y are dependent.

15
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Property 13 (Lower bound on covariance using Cauchy-Schwartz).

Cov(X,Y ) = E((X − E(X))(Y − E(Y )))

C-S
≤
√
E[(X − E(X))2]E[(Y − E(Y ))2]

≤
√

Var(X)Var(Y )

3.2 Moments and Moment Generating Functions

Definition 25 (Moments and Centered Moments). The r-th momemt of X is defined as:

E(Xr) =

{∫
xrpX(x)dx if X cont.∑
x∈X x

rpX(x) if X disc.

E((X −E(X))r) is called the r-th centered moment. Note that Var(X), Skew(X), and Kurtosis(X) are the
second, third, and fourth centered moments.

Definition 26 (Moment Generating Function). The Moment generating function is a powerful function
that describes the underlying features of a RV:

MX(t) = E(etX) = 1 + tE(X) +
t2E(X2)

2!
+
t3E(X3)

3!
+ . . .

The j-th moment of X is then:

E(Xj) = M (j)(0) =
djMX(t)

dtj

∣∣∣
t=0

Property 14 (Properties of MGFs). MGFs have the following properties:

(a) Location-scale: MaX+b = ebtMX(at)

(b) Multiplicity: MX+Y (t) = E(eXteY T ). So if X ⊥ Y =⇒ MX+Y (t) = MX(t)MY (t)

Property 15 (MGFs uniquely determine distribution). For RVs X and Y , if they have the same MGF,
then their distributions (CDFs) are the same.

Theorem 11 (Convergence of MGFs). Suppose {Xi, i = 1, 2, . . .} is a sequence of RVs, each with MGF

16
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MXi(t). Suppose that:

lim
i→∞

MXi(t) = MX(t) For all t in neighborhood of 0

Then there is a unique cdf FX whose moments are determined by MX(t) and for all x where FX(x) is
continous, we have:

lim
i→∞

FXi(x) = FX(x)

17
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4 Convergence Theory

Definition 27 (Convergence in distribution). Consider a sequence of RVs, X1, X2, . . . with corresponding
CDFs F1, F2, . . .. For a random variable X with CDF F , we say Xn converges in distribution to X, i.e.,

Xn
D−→ X if for every x:

lim
n→∞

Fn(x) = F (x)

This can be interpreted as the CDFs of a sequence of random variables converging to the CDF of a fixed
RV.

Note: convergence in distribution is often used to construct a confidence interval or perform a hypothesis
test.

Definition 28 (Convergence in probability). Consider a sequence of RVs, X1, X2, . . .. We say Xn converges

in probability, i.e., Xn
P−→ X, to another random variable X if for any ε > 0:

lim
n→∞

P (|Xn −X| > ε) = 0

Alternatively: lim
n→∞

P (|Xn −X| < ε) = 1

Note that convergence in probability implies convergence in distribution.
Note: an estimator is consistent if it converges in probability towards its target population quantity.

4.1 Inequalities, Weak Law of Large Numbers, and Convergence Theorems

4.1.1 Key Inequalities

Theorem 12 (Markov’s Inequality). Let X be a non-negative RV. Then for any ε > 0:

P (X ≥ ε) ≤ E(X)

ε

This inequality implies that convergence in expectation implies convergence in probability.

Theorem 13 (Chebychev’s Inequality). Let X be a RV and let g be a nonnegative function. For any ε > 0:

P (g(X) ≥ ε) ≤ E[g(X)]

ε

The specific case of g(X) = |X − E(X)| yields:

P (|X − E(X)| ≥ ε) ≤ Var(X)

ε2

Demonstrating that any sequence of random variables with vanishing variance converges in probability to
their mean.
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Theorem 14 (Jensen’s Inequality). Let φ : R→ R be a convex function. Then:

(a) If X is a RV, then:

φ(E(X)) ≤ E(φ(X))

(b) If g is a function s.t. E(g(X)) <∞

φ(E(g(X))) ≤ E(φ(g(X)))

(c) Suppose f : [a, b]→ R is integrable on [a, b].

φ(E(f(x))) = φ

(
1

b− a

∫ b

a

f(x)dx

)
≤ 1

b− a

∫ b

a

φ(f(x))dx

Theorem 15 (Cauchy-Schartz Inequality).

|E(XY )| ≤
√

E(X2)E(Y 2)

Theorem 16 (Triangle/Reverse Triangle inequality). Triangle inequality:

E(|X + Y |) ≤ E(|X|) + E(|Y |)

Triangle inequality with norms: quantity in parentheses taken to squared power:

||x+ y|| ≤ ||x||+ ||y||

Revers triangle inequality:

|||x|| − ||y||| ≤ ||x− y||

4.1.2 Weak Law of Large Numbers

Theorem 17 (Weak Law of Large Numbers). v Let X1, . . . , Xn ∼ F and µ = E[X1], If µ, (X1) = σ2 <∞,
the sample average:

X̄n =
1

n

n∑
i=1

Xi

converges in probability to µ:

lim
n→∞

P (|X̄n − µ| > ε) = 0 =⇒ X̄n
P−→ µ

Thus, regardless of distribution, the sample mean is a consistent estimator of the population mean. The
WLLN follows directly from Chebyshev’s inequality.
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4.1.3 Convergence Theorems

Theorem 18 (Continuous Mapping Theorem). Let g be a continous function:

(a) If a sequence of RVs, Xn
D−→ X, then g(Xn)

D−→ g(X)

(b) If a sequence of RVs, Xn
p−→ X, then g(Xn)

p−→ g(X)

Theorem 19 (Slutsky’s Theorem). Let Xn, Yn be two sequences of RVs such that Xn
D−→ X and Yn

P−→ c,
where X is a RV and c is a constant. Then:

(a) Xn + Yn
D−→ X + c

(b) XnYn
D−→ cX

(c) Xn/Yn
D−→ X/c (if c 6= 0)

4.2 Central Limit Theorem

Theorem 20 (Central Limit Thoerem). Let X1, . . . , Xn be IID RVs with E[X1] = µ and Var[X1] = σ2 <∞.
Let X̄n be the sample average. Then:

√
n

(
X̄n − µ
σ

)
D−→ N(0, 1)

4.3 Concentration inequality

Definition 29 (Concentration inequality). In general, a concentration inequality describes the function that
bounds the probability of the absolute difference between Xn and E(Xn):

P (|Xn − E(Xn)| ≥ ε) ≤ φn(ε)

where φn(ε) → 0 is the concentration inequality. The convergence rate with respect to n is an important
property describing how fast Xn converges to its mean. Note that Chebyshev’s inequality gives a general
concentration inequality that is polynomial with n, but with additional assumptions we can obtain better
convergence rates.

Theorem 21 (Hoeffding’s inequality). Let X1, . . . , Xn be IID RVs s.t. a ≤ X1 ≤ b and let X̄n be the
sample average. Then for any ε > 0:

P (|X̄n − E(X̄n)| ≥ ε) ≤ 2e−2nε2/(b−a)2
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Consider the case of estimating a high dimensional proportion (i.e., proportion who replied Yes to d
survey questions). The vector π̂ = (π̂1, . . . , π̂d) is a good estimator, but can we estimate every proportion
accurately?

P (||π̂ − π||max > ε) = P

(
max

{j=1,...,d}
|π̂j − πj | > ε

)
definition of max norm

≤
d∑
j=1

P (|π̂j − πj | > ε)

= dP (|π̂j − πj | > ε) ≤ 2de−2nε2

Which converges in probability to π (i.e., is a consistent estimator of π) as long as 2de−2nε2 → 0, which

holds when log(d)
n → 0.

Definition 30 (Gaussian concentration). Given X1, . . . , Xn ∼ N(0, σ2) and X̄n be the sample mean, we
know X̄n ∼ N(0, σ2/n). Then:

P (X̄n > ε) = P (etX̄n > etε)

≤ E(etX̄n)

etε
By Markov’s Inequal

≤ e 1
2nσ

2t2−tε By MGF Gaussian

≤ e−
nε2

2σ2 By finding maximum of quad equation wrt s

=⇒ P (|X̄n| > ε) ≤ 2e−
nε2

2σ2

=⇒ P (|X̄n − E(X1)| > ε) ≤ 2e−
nε2

2σ2

Note the Gaussian concentration has convergence rate that is exponential wrt n.
Note: for other RVs whose MGFs satisfies MX(t) ≤ e1/2t2σ2

for all t > 0, this concentration inequality
holds. These types of random variables are called sub-Gaussian. Note that bounded RVs are sub-Gaussian!

Definition 31 (Concentration of a maximum). Suppose X1, . . . , Xn ∼ N(0, σ2) and Zn =
max{|X1|, . . . , |Xn|}. We know from the Gaussian concentration (just replace X̄ with Xi and set n = 1):

P (|Xi| > ε) ≤ 2e−
ε2

2σ2

=⇒ P (Zn) > ε = P (max{|X1|, . . . , |Xn|})

≤
n∑
i=1

P (|Xi| > ε)

≤ 2ne−
ε2

2σ2

As long as the concentration inequality 2ne−
ε2

2σ2 → δ for some δ ∈ (0, 1), we can bound how fast the
maximum diverges. Turns out γn = σ

√
2logn is teh choice of sequence such that Zn/γn does not diverge in

probability.
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5 Conditional distribution and conditional expectation

5.1 Conditional distribution

Definition 32 (Conditional distribution). The conditional distribution of X|Y , denoted pY |X(y|x) can be
written in the following four ways:

1. If X,Y continuous: pY |X(y|x) =
∂2F (x,y)
∂x∂y∫∞

−∞ pXY (x,y)dy
= pXY (x,y)

pX(x)

2. If X,Y discrete: pY |X(y|x) = P (X=x,Y=y)
P (X=x) = pXY (x,y)

pX(x)

3. If X discrete, Y continuous: pY |X(y|x) = d
dyP (Y ≤ y|X = x) =

d
dyP (Y≤y)

P (X=x) = pXY (x,y)
pX(x)

4. If X continuous, Y discrete: we choose C s.t. {(X,Y ) ∈ C} = {Y = y}. pY |X(y|x) = P (Y = y|X =

x) = P ((X,Y ) ∈ C|X = x) = 1
pX(x)

d
dxP ((X,Y ) ∈ C,X ≤ x = 1

pX(x)
d
dxP (Y = y,X ≤ x) =

pXY (x,y)

pX(x)

Strategy 3 (Calculating conditional distributions). A tried and true strategy for finding pY |X(y|x) is to

take the joint pdf over the marginal of X: pY |X(y|x) =
pX,Y (x,y)
pX(x) .

However, note that PY |X(y|x) is a function of y, so you can consider the x-terms as constants and consider
only components involving y.

For example, consider discrete X and continuous Y s.t. pX,Y (x, y) = λyxe−(λ+1)y

x! . Then:

pX|Y (x|y) ∝ pX,Y (x, y) =
λyxe−(λ+1)y

x!

∝ yx

x!
= Pois(y) (By recognizing the kernel of Poisson pdf)

pY |X(x|y) ∝ pX,Y (x, y) =
λyxe−(λ+1)y

x!

∝ yxe−(λ+1)y

= Gamma(x+ 1, λ+ 1) (By recognizing the kernel of Gamma pdf)

5.2 Conditional Expectation

Definition 33 (Conditional Expectation). The conditional expectation of Y given X is:

E(Y |X = x) =

{∫
yp(y|x)dy, if Y is cont∑
y yp(y|x), if X is cont

Theorem 22 (Law of Total Expectation). In the more specific form:

E[Y ] = E[E[Y |X]]

22



Ethan Ashby STAT512 Important Results Autumn 2021

In the more general version:

E[g(X,Y )] = E[E[g(X,Y )|X]]

Property 16 (Properties of conditional expectation). Conditional expectation has the following few prop-
erties:

1. If X ⊥ Y , E(X|Y = y) = E(X)

2. Suppose g(x, y) = q(x)h(y), then E[q(X)h(Y )] = E[q(X)E[h(Y )|X]]

3. Cov(g(X), q(Y )) = Cov(g(X), E(q(Y )|X)) (Substitute w(x) = E(q(y)|x))

Theorem 23 (Law of Total Variance).

Var(Y ) = E[Var(Y |X)] + Var(E[Y |X])

Definition 34 (Cool example: Inverse Probability weighting). Suppose we’re interested in estimating Y

given X, however, we don’t always observe Y . R =

{
1 when X,Y observed

0 when Y not observed
. Assume R ⊥ Y |X,

meaning given some value of X, missingness is independent of Y . Thus, P (R = 1|X,Y ) = P (R = 1|X) =
π(X) is a function of X. The inverse probability weighting quantity :

W =
RY

π(X)

has the same mean as Y . Thus:

µ̂ =
1

n

n∑
i=1

RiYi
π(Xi)

Is the inverse probability weighting estimator which is an unbiased estimator. Note: you can think about the
inverse probability weighted estimator as the mean uncensored income weighted by the probability someone
responded given their age in our dataset.
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6 Correlation, Prediction, Regression

6.1 Correlation

Definition 35 (Pearson’s Correlation). Correlation measures the linear relationship between two variables.

ρXY = Cor(X,Y ) =
Cov(X,Y )√

Var(X)Var(Y )
=

Cov(X,Y )

σXσY

Property 17 (Properties of Pearson’s Correlation). Correlation has the following properties

1. Cor(X,Y ) = Cor(Y,X)

2. Location-scale: Cor(aX + b, cY + d) = sign(ac)Cor(X,Y )

3. −1 ≤ Cor(X,Y ) ≤ 1 and Cor = ±1 iff X = aY + b for constants a, b.

6.2 Regression function & MSE prediction

Definition 36 (Mean-square error). To measure how good a predictor g(X) is of Y , we often use the
mean-square error (MSE):

R(g) = E((Y − g(X))2)

= E[Var(Y |X)] + E[(E[Y |X]− g(X))2]

MSE is the expected squared deviations from the target Y .

Strategy 4 (MSE wrt constant). Note that when the MSE of Y relative to a constant/fixed number/target:

E[(Y − c)2] = Var[Y ] + (E[Y ]− c)2

Definition 37 (Regression function). The regression function/best predictor is the g(X) that minimizes the
MSE, where g(X) = E[Y |X] (see Definition 36 above).

Then, Y can be considered as:

Y = E[Y |X]︸ ︷︷ ︸
best predictor

+ (Y − E[Y |X])︸ ︷︷ ︸
residuals

Property 18 (Properties of regression function).
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1. Unbiased: E[best predictor] = E[E[Y |X]] = E[Y ] and E[residuals] = 0

2. Uncorrelated: Cov(E[Y |X], (Y − E[Y |X])) = 0

3. Residual variance: Var(Y − E[Y |X]) = E[Var(Y |X)]

4. Variance decomposition: Var(Y ) = Var(E[Y |X])︸ ︷︷ ︸
Var(best predictor)

+ E[Var(Y |X)]︸ ︷︷ ︸
average Var(residuals)

6.3 Linear regression

Definition 38 (Best linear predictor). We often restrict our search for a best predictor to a simple class of
functions, for example, linear function: Y = αβX. Then we choose α, β that minimize the MSE:

α∗, β∗ = argminα,βE((Y − α− βX)2) = argminα,βR(α, β)

β∗ =
Cov(X,Y )

Var(X)

α∗ = E[Y ]− β∗E[X] (By solving the gradient equation
∂

α
R = 0 and

∂

β
R = 0

Therefore, the best linear predictor, m∗(x) is:

m∗(x) = α∗ + β∗x

= E[Y ] +
Cov(X,Y )

Var(X)
(x− E[X])

= µy + ρXY
σY
σX

(X − µx)

Property 19 (MSE under best linear predictor). The MSE under the best linear predictor is:

R(α∗, β∗) = E((Y − α∗ − β∗x)2)

= E(((Y − µy) + (−ρXY
σY
σX

(X − µx)))2)

= σ2
Y (1− ρ2

XY )

Definition 39 (Multivariate linear regression). Consider the data vector Z = (X1, . . . , Xp) and coefficient
vector γ = (α, β1, . . . , βp). Then MSE:

R(γ) = R(α, β) = E((Y − γTZ)2) = E((Y − α− β1X1 − . . . βpXp)
2)

= E[Y TY ]− 2γTE[ZY ] + γTE[ZZT ]γ

∂

∂γ
R(γ) = 0 =⇒ 0 = −2E[ZY ] + 2E[ZZT ]γ =⇒ γ∗ = E[ZZT ]−1E[ZY ]

25



Ethan Ashby STAT512 Important Results Autumn 2021

Property 20 (Correctness vs misspecified).

1. When the linear model is misspecified (incorrect), the best linear predictor will change as the distri-
bution of the covariate changes... i.e., the model will be sensitive to changes in covariates

2. When the linear model is correct (i.e., Y is a linear function of Z), Y = γ̄Z + ε for some γ̄ ∈ Rp+1 and
ε ⊥ Z and E[ε|Z] = 0, the least square coefficient is the same as the true coefficient: γ∗ = γ̄.

6.4 Binary classification

Definition 40 (Binary Classifier). c(x) is a classifier if c : X︸︷︷︸
support of X, usually R

→ Y︸︷︷︸
{0, 1}

Definition 41 (0-1 loss). The 0-1 loss is a function used to measure the success/accuracy of a binary
classifier.

L(c(X), Y ) =

{
0 if c(X) = Y

1 if c(X) 6= Y

Definition 42 (Bayes classifier). The Bayes classifier (c∗) is the classifier that minimizes:

c∗(x) = argmin
c

R(c) = argmin
c

E[L(c(x), y)]

= argmin
c

E[E[L(c(x), y)]|X]

= argmin
c

L(c(x), Y = 1)P (Y = 1|X) + L(c(x), Y = 0)P (Y = 0|X)

= argmin
c

I(c(x) = 0)P (Y = 1|X) + I(c(x) = 1)P (Y = 0|X)

c∗(x) =

{
0 if P (Y = 1|X) < P (Y = 0|X)

1 if P (Y = 1|X) > P (Y = 0|X)

The classifier is the optimal classifier. It is called Bayes b/c it uses conditional probabilities to make its
choice.
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7 Estimators

In the real world, we observe data, X1, . . . , Xn a random, IID sample from a population. Assuming they
were generated from a parametric model, we can use X1, . . . , Xn to estimate/learn the parameters of the
model.

Definition 43 (Estimator). An estimator is a statistic W (X1, . . . , Xn) such that W can be used to estimate
θ, the parameter for a parametric model.

7.1 Method of Moments estimator

Strategy 5 (Method of Moments estimation). The moments of a parametric model are determined by the
underlying parameter. Suppose we have k parameters in the model: θ ∈ Rk.

We can take all the theoretical moments:

mj(θ) =

∫
xjp(x; θ)dx

And equate them to the sample moments (which are very easily calculated):

m1(θ) =
1

n

n∑
i=1

Xi

m2(θ) =
1

n

n∑
i=1

X2
i

. . .

mk(θ) =
1

n

n∑
i=1

Xk
i

The resulting θ that solves the equations above is called the method of moments estimator and is termed
θ̂MoM.

7.2 Maximum Likelihood estimation

Definition 44 (Likelihood function, Log Likelihood, Score Function, & MLE). If we consider the data, X,
is fixed and we want to choose θ that is most likely to generate X, we define the likelihood function:

L(θ|X1, . . . , Xn) = p(X1, . . . , Xn; θ)

When IID, the likelihood function can be written as:

L(θ|X1, . . . , Xn) =

n∏
i=1

L(θ|Xi) =

n∏
i=1

p(Xi|θ)

The log likelihood is a useful quantity to work with in finding the MLE:

`n(θ) = logLn(θ) =

n∑
i=1

log p(Xi; θ)
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The score function is the gradient of the log-likelihood, which when set to 0, is satisfied by the MLE:

Sn(θ) =
∂

∂θ
`n(θ) =

n∑
i=1

∂

∂θ
`(θ|Xi) =

n∑
i=1

∂

∂θ
log p(Xi; θ)

The maximum likelihood estimator is defined as:

θ̂MLE = argmaxθL(θ|X)

Definition 45 (The Fisher Information). The Fisher information (matrix) describes the curvature of
the log-likelihood surface.

In(θ) = −E[∇θ∇θ`n(θ|X1)] = nI1(θ) = n · −E[∇θ∇θp(X1; θ)]

Near the MLE, low fisher information implies a ”blunt/shallow” maximum, meaning that there are other
nearby points with similar log-likelihoods. Low fisher information implies high variance of the estimator.

Definition 46 (Cramer-Rao Lower Bound). The Cramer-Rao lower bound provides a lower bound on
the variance of an estimator:

Var(θ̂(Y )) ≥

(
∂
∂θ̂
E[θ̂(Y )]

)2

I(θ)

For an unbiased estimator, we can write the inequality as:

Var(θ̂(Y )) ≥ 1

I(θ)

If an estimator achieves it’s Cramer-Rao lower bound, it is known as efficient (lowest possible variance).

Property 21 (Properties of the MLE).

1. Asymptotic Efficiency: the MLE is asymptotically efficient, i.e., as n→∞, Var(θ̂) = I−1(θ).

2. Consistency: the MLE is always consistent, i.e., lim
n→∞

P (|θ̂ − θ| < ε) = 1 =⇒ θ̂
P−→ θ.

3. Asymptotically unbiased: the MLE is always asymptotically unbiased: lim
n→∞

E[θ̂n] = θ

4. Asymptotic Normality: the MLE is always asymptotically normal:
√
n(θ̂ − θ) D−→ N(0, I−1(θ))

Strategy 6 (Maximum Likelihood Estimation). A common trick to find the MLE is to set the gradient
of the log-likelihood (score function) equal to 0 and find the parameter estimates that generate maxima.
Always remember to evaluate the second derivative to see if we have a maximum!
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7.3 Bayesian estimation

Definition 47 (Prior, Posterior, Conjugate Prior). Bayesian inference does not assume a probability model
to be true, meaning that there is NO true parameter. Rather, the paradigm just considers probability models
as useful mathematical tools for analyzing data.

Bayesian inference focuses on the distribution of θ after observing X1, . . . , Xn, i.e., the posterior dis-
tribution:

π(θ|X1, . . . , Xn) =
p(X1, . . . , Xn, θ)

p(X1, . . . , Xn)
∝ p(X1, . . . , Xn|θ)︸ ︷︷ ︸

likelihood

×π(θ)︸︷︷︸
prior

Thus, the posterior is proportional to the likelihood times the prior distribution which reflects our belief
about the value of θ. A conjugate prior is a prior distribution that produces a posterior distribution from
the same family as the prior.

Definition 48 (Posterior Mean and MAP estimates). The posterior mean is the mean of the posterior
distribution, a common estimator θ:

θ̂π = E(θ|X1, . . . , Xn) =

∫
θπ(θ|X1, . . . , Xn)dθ

The Maximum a posteriori (MAP) estimate, similarly to the MLE, chooses the value of θ that is most
likely:

θ̂MAP = argmax
θ

π(θ|X1, . . . , Xn)

Property 22 (Decomposition of posterior mean). In some cases, the posterior mean can be shown to be a
weighted average of the MLE and prior mean. For example, for Y ∼ Bin(N, θ) ad θ ∼ Beta(α, β), we can
calculate π(θ|Y ) ∼ Beta(Y + α,N − Y + β). Then the posterior mean is:

θ̂π =
Y

N
× N

N + α+ β
+

α

α+ β
× α+ β

N + α+ β

= θ̂MLE ×W + Prior mean× (1−W )

And as the sample size N →∞, i.e., as we get more data, the MLE dominates. When N is small, the prior
mean contributes more.

7.4 Empirical Risk Minimization

Definition 49 (Loss function, Risk function, and Empirical risk minimizer). A loss function L : Y×Y → R
is a function that measures the quality of prediction. Consider a prediction model fβ(X) = XTβ
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We can define the risk function like so:

R(β) = E[L(Y, fβ(X))]

The empirical risk is the estimated/computable version of the risk function:

R̂(β) =
1

n

n∑
i=1

L(Y, fβ(X))

The empirical risk minimizer is defined as the choice of β that minimizes the empirical risk:

β̂ = argmin
β

R̂(β)

7.4.1 M-estimation

Definition 50 (M-estimation). M-estimation finds an estimator by maximizing an empirical objective func-
tion:

θ̂ = argmax
θ

1

n

n∑
i=1

ω(θ;Xi)

When we choose the log-likelihood as the objective function, the M-estimator is the MLE.
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8 Multinomial distribution

8.1 Multinomial distribution, Properties, MLE

Definition 51 (Multinomial distribution). The multinomial distribution is useful for characterizing cate-
gorical variables. If X has k categories with (p1, . . . , pk) describing the category-wise probabilities and with
the constraint that

∑
j pj = 1, then we describe X = (X1, . . . , Xk) ∼Mk(n; p1, . . . , pk) where:

p(X = x) = p(X1 = x1, . . . , Xk = xk) =
n!

x1! . . . xk!
px1

1 . . . pxkk

And:

MGF: MX(s) = E
[
es
TX
]

= E
[
es
TY1

]n
=

 k∑
j=1

pje
sj

n

Property 23 (Properties of multinomial). The multinomial has some nice properties:

(a) Sum of independent multinomials: If X ∼Mk(n; p1, . . . , pk) and V ∼MK(m; p1, . . . , pk), then:

X + V ∼Mk(n+m; p1, . . . , pk)

(b) Sum of IID draws: If X ∼Mk(n; p1, . . . , pk), then

X =

n∑
i=1

Yi

Where Yi
iid∼ Mk(1; p1, . . . , pk). In other words, a multinomial RV with sample size n can be interpreted

as n single draws from the multinomial dist with same params.

(c) ”Block” decomposition produces conditionally independent multinomial RVs: Suppose we
partition X = (X1, . . . , Xk) into r blocks.

(X1, . . . , Xk1)︸ ︷︷ ︸
B1

, . . . , (Xkr−1 , . . . , Xk)︸ ︷︷ ︸
Br

Then B1, . . . , Br are conditionally independent given S1, . . . , Sr where Si is the block-specific sum for
Bi. Implying:

Bj |Sj ∼Mkj ,...,kj−1

Sj ; pkj−1+1∑kj
`=kj−1+1 p`

, . . . ,
pkj∑kj

`=kj−1+1 p`


(d) Conditional distribution of Xi|Xj : this is equivalent to the blocking case when r = 2:

(X1, . . . , Xj−1, Xj+1, . . . , Xk)|Xj ∼Mk−1(n−Xj ;
p1

1− pj
, . . . ,

pk
1− pj

)

So the marginal distribution is:

Xi|Xj ∼ Binomial(n−Xj ,
pi

1− pj
)
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(e) Negative correlation between entries: Suppose X = (X1, . . . , XK) ∼ Mk(n; p1, . . . , pk). Then
Cov(Xi, Xj) < 0 because if Xi is really large, Xj can’t be really large b/c they must sum to n. More
technically:

Cov(Xi, Xj) = E[Cov(Xi, Xj |Xj)︸ ︷︷ ︸
=0

] + Cov(E[Xi|Xj ],E[Xj |Xj ])

= Cov(E[Xi|Xj ], Xj)

= Cov

(
(n−Xj)

pi
1− pj

, Xj

)
= − pi

1− pj
Var(Xj)

= −npipj

Strategy 7 (Constrained optimization with Lagrange multipliers). In the case of a multinomial distribution,
we are unable to simply set the gradient of the log-likelihood equal to 0 and solve for p1, . . . , pk. We need to
account for the constraint

∑k
i=1 pi = 1.

Optimizing the log-likelihood over the constraint region is akin to having the log-likelihood tangentially
intersect the constrained space. This implies that the gradients of the log-likelihood and constrained spaces
are scalar multiples of each other:

∇`n(p1, . . . , pk|X) = λ∇g(p1, . . . , pk)

=⇒ 0 = ∇`n(p1, . . . , pk|X)− λ∇g(p1, . . . , pk)

In the multinomial case:

0 = ∇`n(p1, . . . , pk|X)− λ∇g(p1, . . . , pk)

= ∇
k∑
j=1

Xj log pj + λ∇

1−
k∑
j=1

pj


︸ ︷︷ ︸
Constraint = 0

∂F

∂pj
=
Xj

pj
− λ = 0

=⇒ Xj = λ̂ p̂MLE,j

And since n =
∑
Xj = λ̂

∑
pj = λ̂, p̂MLE,j =

Xj

n
See here for more discussion on Lagrange multipliers.

8.2 Dirichlet Distribution & Connections to Multinomial

Definition 52 (Dirichlet distribution). The Dirichlet distribution models random vectors with length k
and non-negative elements that sum to 1. In other words, it generates a random probability vector. In other
words, the dirichlet distribution can be considered a generalization of the beta distribution.
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It is characterized by pdf:

p(X1, . . . , xk;α1, . . . , αk) =
1

β(α)

k∏
i=1

xαi−1
i

And has important values:

Mean: E(Xi) =
αi∑k
j=1 αj

Mode: Mode(Xi) =
αi − 1∑k
j=1 αj − k

Property 24 (Bayesian inference with multinomial likelihood and Dirichlet prior). Dirichlet distributions
are often used as priors for multinomial likelihoods.

π(p|X) ∝ n!

x1! . . . xk!
px1

1 . . . pxkk ×
1

β(α)

k∏
i=1

pαi−1
i

∝ px1+α1−1
1 . . . pxk+αk−1

k

∼ Dirch(x1 + α1, . . . , xk + αk)

Thus, the posterior mean is:

p̂π,i =
xi + αi∑k
j=1 xj + αj

And the αj (prior parameters) can be viewed as the pseudocount of the category j before collecting the data.
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9 Linear, MVN Dist, Chi-Square Dist

9.1 Linear Algebra

Definition 53 (Basic definitions).

(a) Rank: dimension of the columnspace of a matrix (the space Rn that is spanned by vectors that are
the columns of your matrix)

(b) Inverse/regular: a matrix A is invertible if there exists a matrix A−1 s.t. AA−1 = In. Note TFAE:

(i) A is invertible

(ii) A is full rank

(iii) det(A) 6= 0

Also note the following properties

(i) If n× n matrices A and B are invertible, AB is invertible with inverse (AB)−1 = B−1A−1

(ii) For a diagnonal matrix D = Diag(d1, . . . , dn), its inverse D−1 = Diag(d−1
1 , . . . , d−1

n )

(c) Transpose: for an m×n matrix A, it’s transpose, AT is an n×m matrix s.t. [AT ]ij = Aji. Also note
the following properties:

(i) (A+B)T = AT +BT

(ii) (AB)T = BTAT

(iii) (A−1)T = (AT )−1

(d) Trace: trace is the sum of diagonal entries. Also note the following properties:

(i) Tr(aA+ bB) = aTr(A) + bTr(B)

(ii) Tr(A) = Tr(AT )

(iii) Tr(AB) = Tr(BA)

(iv) Cylic properties: Tr(ABC) = Tr(BCA) = Tr(CAB)

(e) Determinant: For an n× n matrix, its determinant is:

det(A) =
∑
π

ε(π)

n∏
i=1

Aiπ(i)

Where π is all possible permutations of {1, 2, . . . , n} and ε(π) = ±1 depending if it is an even or odd
permutation. Note the following properties:

(i) det(AB) = det(A) · det(B) when both square

(ii) det(A)−1 = det(A−1)

(iii) det(AT ) = det(A)

(iv) det(A) =
∏n
i=1Aii if A is triangular

(f) Orthogonal matrix: An n×n matrix is orthogonal if ATA = In. In other words, its column vectors
from an orthonormal basis of Rn (i.e., they span Rn, are mutually perpendicular, and all have norm
= 1). Note that for an orthogonal matrix, AT = A−1.

(g) Eigenvalues and eigenvectors: eigenvalues are the roots of λ1, . . . , λn to the following equation:

det(A− λIn) = 0

For each λj , there exists an eigenvector uj s.t. (A− λjIn)uj = 0.
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Definition 54 (Symmetric Matrices). A matrix A is symmetric if A = AT . The following are properties of
symmetric matrices:

(i) Real eigenvalues/eigenvectors

(ii) Orthogonal eigenvectors: for λj 6= λk, uj ⊥ uk, i.e., uj is orthogonal to uk or uTj uk = 0

(iii) Spectral decomposition: a symmetric matrix A can be factorized according to its eigenval-
ues and eigenvectors: let λ1, . . . , λn be the eigenvalues and u1, . . . , un be the eigenvectors. Let
Λ = Diag(λ1, . . . , λn) and U = [u1, . . . , un]. Then:

A = UΛUT =

n∑
i=1

λiuiu
T
i

(iv) Trace: Tr(A) =
∑n
i=1 λi

(v) Determinant: det(A) =
∏n
i=1 λi

Definition 55 (Positive definite/Positive semi-definite matrices). A symmetric matrix is positive semi-
definite matrix if

xTAx ≥ 0

For all x ∈ Rn. A matrix is positive definite matrix if

xTAx > 0

For all x ∈ Rn and xTx > 0. Here are some properties of PD and PSD matrices:

(i) All PSD/PD matrices are symmetric

(ii) In is PD

(iii) A diagonal matrix is PD/PSD if Dii > 0 or Dii ≥ 0 for all i respectively.

(iv) If S ∈ Rn×n is PSD and A ∈ Rm×n, then ASAT is PSD.

(v) If S ∈ Rn×n is PD and A ∈ Rm×n has rank(A) = m ≤ n, then ASAT is PD.

(vi) AAT is PSD

(vii) AAT is PD if rank(A) = m ≤ n

(viii) A is PD =⇒ A is full rank =⇒ A has an inverse =⇒ A−1 is PD.

(ix) A symmetric matrix is PSD/PD if all its eigenvalues λ ≥ 0 or λ > 0 respectively.

(x) The square root of a PD matrix is C = U
√

ΛUT where UλUT is the spectral decomposition of A.

Property 25 (Block decompositions of PD matrices). Suppose that A ∈ Rn×n PD matrix and suppose we
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can decompose it into 4 submatrices:

A =

(
S11 S12

S21 S22

)
Then the following properties hold:

(i) S11 and S22 are PD

(ii) S11,2 = S11 − S12S
−1
22 S21 is PD

(iii) S22,1 = S22 − S21S
−1
11 S12 is PD

(iv) For any vector x =

(
x1

x2

)
∈ Rn, then

xA−1x = (x1 − S12S
−1
22 x2)S−1

11,2(x1 − S12S
−1
22 x2) + x2S

−1
22 x2

Definition 56 (Projection Matrix). A matrix P is a projection matrix if it is symmetric and idenpotent
(A2 = A). The following properties hold:

(i) A is a projection matrix iff there exists orthogonal matrix U s.t.

A = U

(
Im 0
0 0

)
UT

(ii) If we partition U = [U1, U2] where U1 ∈ Rn×m and U2 ∈ Rn×(n−m), then P = U1U
T
1 , implying that P

projects any vector in Rn into the column space of U1 and is orthogonal to the columnspace of U2.

(iii) rank(P ) = m

(iv) In − P is also a projection matrix that projects any vector in Rn to the space orthogonal to the
columnspace of U1.

9.2 Transformations of multiple RVs and the Jacobian Method

Strategy 8 (First principles). Given U = f(X,Y ) and V = g(X,Y ), we can derive the joint CDF of U, V
using first principles:

FU,V (u, v) = P (U ≤ u, V ≤ v)

= P (f(X,Y ) ≤ u, g(X,Y ) ≤ v)

=

∫
R(U,V )

pXY (x, y)dxdy

Where R(U, V ) = {(x, y) : f(x, y) ≤ ug(x, y) ≤ v}
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Strategy 9 (Jacobian Method). Consider x and y ∈ Rn and a 1-1, onto mapping between them T . The
Jacobian matrix is defined as:

JT (x) =

(
∂T (x)

x

)
=


∂y1
∂x1

. . . ∂yn
∂x1

...
...

...
∂y1
∂xn

. . . ∂yn
∂xn


The Jacobian is the absolute value of the determinant of the Jacobian matrix: |det(JT (x))|
Suppose we know how (X,Y ) jointly vary and we have U = T1(X,Y ) and V = T2(X,Y ) where T is 1-1

and onto. Then:

pU,V (y) = pX,Y (T−1(x, y))

∣∣∣∣∂x∂y
∣∣∣∣

Where |∂x∂y | is the absolute value of the determinant of the Jacobian under the inverse mapping:∣∣∣∣ ∂(x, y)

∂(u,w)

∣∣∣∣ =

∣∣∣∣det

(
∂x
∂u

∂y
∂u

∂x
∂w

∂y
∂w

)∣∣∣∣
=

∣∣∣∣∂T−1(u,w)

∂(u,w)

∣∣∣∣ =

∣∣∣∣∣det

(
∂T−1

1 (u,w)
∂u

∂T−1
2 (u,w)
∂u

∂T−1
1 (u,w)
∂w

∂T−1
2 (u,w)
∂w

)∣∣∣∣∣

9.3 Covariance matrix

Definition 57 (Covariance matrix). The covariance matrix a vector of random variables X = (X1, . . . , Xn)
is:

Cov(X) = E[(x− E(X))(X − E(X))T ]

=

 Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)
...

...
...

...
Cov(Xn, X1) Cov(Xn, X2) . . . Var(Xn)


Note the following properties of the covariance matrix:

(i) Cov(X) = E(XXT )− E(X)E(X)T

(ii) For A ∈ Rm×n (fixed) and b ∈ Rm:

Cov(AX + b) = ACov(X)AT

(iii) For a ∈ Rn, Var(aTX) = aTCov(X)a

(iv) The covariance matrix is PSD

(v) The covariance matrix is PD if the only vector a ∈ Rn s.t. Var(aTX) = 0 is a = 0.

9.4 Multivariate Normal Distribution
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Definition 58 (MVN). Consider Z = (Z1, . . . , Zn) where Z1, . . . Zn
iid∼ N(0, 1). Now consider X = AZ + µ

where A ∈ Rn×n is an invertible (fixed) square matrix and µ ∈ Rn is a fixed vector. Then:

X ∼ N(µ,Σ)

pX(x1, . . . , xn) =

(
1

2π

)n/2
1√

det(Σ)
e−

1
2 (x−µ)TΣ−1(x−µ)

Where Σ = Cov(X) = AAT .
Note: the multivariate normal distribution X ∼MVN(µ,Σ) with µ ∈ Rd and Σ ∈ Rn×n has the following

MGF:

MX(t) = et
Tµ+ 1

2 t
Tσt

Property 26 (Properties of MVN). The multivariate normal distribution has the following properties:

(i) Linearity: a linear transformation of a multivariate normal distribution is still normal:

Y = CX + b ∼ N(Cµ+ b, CΣCT )

(i) Independence ⇐⇒ uncorrelation:

Xi ⊥ Xj ⇐⇒ Cov(Xi, Xj) = Σij = 0

(i) Marginal is normal: Suppose X = (X1, X2), where X1 ∈ Rn1 and X2 ∈ Rn2 . µ = (µ1, µ2), and

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, then:

Xi ∼ N(µi,Σii)

(i) Conditional is normal:

X1|X2 ∼ Nn1
(µ1 + Σ12Σ−1

22 (X2 − µ2),Σ11,2)

Where Σ11,2 = Σ11 − Σ12Σ−1
22 Σ21

9.5 Chi-Square Dist

Definition 59 (Chi-Square Dist). Let X = (X1, . . . , Xn)T ∼MVN(0, In). Then the random variable:

Wn = XTX =

n∑
i=1

X2
i = ||X||2 ∼ χ2

n

Note the following properties of a Chi-square RV:

Mean : E(Wn) = n

Variance : Var(Wn) = 2n
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Property 27 (Normalizing Gaussian vector). Suppose Y ∼ N(µ,Σ):

Z = Σ−
1
2 (Y − µ) ∼ N(0, In)

ZTZ = (Y − µ)TΣ−1(Y − µ) ∼ χ2
n

Property 28 (Chi-Square connections to Gamma, Normal). The Chi-square distribution is just a special
kind of Gamma distribution:

χ2
p

D⇐⇒ Gamma(α =
p

2
, γ = 2)

And if X ∼ N(0, σ2) is a 0-centered, nonstandard normal:

X2

σ2
∼ χ2

1

X2 = σ2χ2
1 ∼ Gamma(

1

2
, 2σ2)

Suppose we have X1, . . . , Xn
iid∼ N(0, σ2):

n∑
i=1

X2
i

σ2
∼ χ2

n

n∑
i=1

X2
i = σ2χ2

n ∼ Gamma
(n

2
, 2σ2

)

Property 29 (Projection property). Let X ∼ N(µ, In) be multivariate normal vector and P be a projection
matrix with rank(P ) = m < n. Then

(X − µ)TP (X − µ) ∼ χ2
m

Property 30 (iid normals). Suppose X1, . . . , Xn
iid∼ N(µ, σ2). Let X̄ = 1

n

∑n
i=1Xi be the sample mean and

S2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 be the sample variance. The following results hold:

(i) X̄n ⊥ S2
n

(ii) X̄n ∼ N(µ, σ2/n)

(iii) (n− 1)
S2
n

σ2 ∼ χ2
n−1
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10 Order statistics

Definition 60 (Order statistics). Let X1, . . . , Xn
iid∼ a continuous distribution. The order statistics Y1 <

· · · < Yn, also denoted X(1), . . . X(n), are the ordered version of the n random variables. Thus, the mapping:

(X1, . . . , Xn)→ (Y1, . . . , Yn)

is n!-to-1, because any permutation of (X1, . . . , Xn) yields the same set of order statistics.

Property 31 (Marginal Dist and Joint Distribution). The following are properties of order statistics:

1. Distribution of Yj :

pYj (y)dy ≈ P (y ≤ Yj ≤ y + dy)

⇐⇒ P ((j − 1) Xi’s are below y, (n− j) Xi are above y + dy, one Xi within [y, y + dy])

⇐⇒
(

n

j − 1

)
FX(y)j−1

(
n− j + 1

n− j

)
(1− FX(y + dy))

n−j
P (y ≤ Yj ≤ y + dy)

=

(
n

j − 1

)
FX(y)j−1

(
n− j + 1

n− j

)
(1− FX(y))

n−j
pX(y)dy

Dividing both sides by dy, we obtain:

pYj (y) =
n!

(j − 1)!(n− j)!
FX(y)j−1 (1− FX(y))

n−j
pX(y)

2. Distribution of Yj , Y`:

pYj ,Y`(y, z)dydz ≈ P (y ≤ Yj ≤ y + dy, z ≤ Y` ≤ z + dz)

⇐⇒ P (A)

Where A is the event that:

(i) (j − 1) Xi’s below y

(ii) One Xi between [y, y + dy]

(iii) (`− j − 1) Xi’s between (y + dy, z)

(iv) One Xi between [z, z + dz]

(v) Remaining (n− `) Xi’s above z + dz

Writing out P (A) and dividing both sides by dydz, we obtain:

pYj ,Y`(y, z) =
n!

(j − 1)!(`− j − 1)!(n− `)!
Fx(y)j−1pX(y)(FX(z)− FX(y))(`−j−1)pX(z)(1− FX(z))(n−`)

3. Distribution of Y1, . . . , Yn: Applying the procedure outlined above:

pY1,...,Yn(y1, . . . , yn) = n!pX(y1) . . . pX(yn)
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Property 32 (Order statistics of Standard Uniform). X1, . . . , Xn
iid∼ Unif[0, 1]. Then the pdf of Yj is:

pYj (y) =
n!

(j − 1)!(n− j)!
yj−1(1− y)n−j

=⇒ Yj ∼ Beta(j, n− j + 1)

So the variance of Yj :

Var(Yj) =
j(n− j + 1)

(n+ 1)2(n+ 2)

Which, when n is odd, is maximized at j = n+1
2 , i.e., the median:

Var(Yn+1
2

) =
1

4(n+ 2)
= O(n−1)

While the variance of the max and min are lowest:

Var(Y1) = Var(Yn) =
n

(n+ 1)2(n+ 2)
= O(n−2)

Definition 61 (Spacing between order statistics of standard uniform). Let W1, . . . ,Wn+1 be the spacing
between consecutive order statistics:

W1 = Y1 − 0

W2 = Y2 − Y1

...

Wn = Yn − Yn−1

Wn+1 = 1− Yn

Where Wi ∈ [0, 1],
∑n+1
i=1 Wi = 1, and we can define the original order statistics as the partial sum of the

gaps: Yj =
∑j
i=1Wi.

We know the pdf of Y1, . . . , Yn is:

pY1,...,Yn = n!

=⇒ pW1,...,Wn
= pY1,...,Yn(w1, . . . , wn)

∣∣∣∣det

(
dY

dW

)∣∣∣∣
pW1,...,Wn = n!

Because the Jacobian of the inverse mapping is upper triangular with 1’s on the diagonals.
Exchangeable: Since the distribution of W1, . . . ,Wn is invariant under any permutation (they are

exchangeable), the marginal distribution of Wi is the same as the marginal of Wj for all j. Since W1 = Y1 ∼
Beta(1, n), then

Wj ∼ Beta(1, n)
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Note the distribution of Wi,Wj
D∼W1,W2 by exchangeability property. So:

Cov(Wi,Wj) = Cov(W1,W2)

=
1

2
(Var(W1 +W2)−Var(W1)−Var(W2))

=
1

2
(Var(Y2)−Var(Y2))

=
−1

(n+ 1)2(n+ 2)
< 0 (By plugging in the variance formula from above)
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11 Functionals & Bootstrap

11.1 EDF

Definition 62 (Empirical Distribution Function). The EDF is an estimator of the CDF. Recall the CDF
of X: FX(x) = P(X ≤ x). Given a sample, X1, . . . , Xn, our estimator of the CDF is:

F̂n(x) =
# Xi ≤ x

Total # Xi
=

1

n

n∑
i=1

I(Xi ≤ x)

The empirical distribution function essentially places a point mass of 1
n on each observed Xi.

Property 33 (Unbiasedness, consistency, and asymptotic normality of EDF). Let Yi = I(Xi ≤ x) ={
1, if Xi ≤ x
0, if Xi > x

. Then Yi ∼ Bernoulli(F (x)). This implies:

E(I(Xi ≤ x)) = E(Yi) = F (x)

Var(I(Xi ≤ x)) = Var(Yi) = F (x)(1− F (x))

Now for F̂n(x):

E(F̂n(x)) = E

(
1

n

n∑
i=1

I(Xi ≤ x)

)
= E(I(X1 ≤ x)) = F (x)

Var(F̂n(x)) = Var(
1

n

n∑
i=1

I(Xi ≤ x))

=
1

n2

n∑
i=1

Var(Yi) =
F (x)(1− F (x))

n

Since E(F̂n(x)) = F (x) for any x, F̂n(x) is an unbiased estimator of F . Since it is unbiased and
Var(E(F̂n(x)))→ 0 as n→∞, F̂n(x) is also a consistent estimator of F . Also:

√
n(F̂n(x)− F (x))

D−→ N(0, F (x)(1− F (x)))

Meaning F̂n(x) is asymptotically normal around F (x).

11.2 Statistical Functionals & The Plug In Principle

Definition 63 (Functionals and Plug-In Principle). A statistical functional is a function of a function.
One can consider any parameter of interest, θ as a functional of the population CDF: θ(F ).

Plug-in Principle: The power of statistical functionals is that we phrase parameters of interest in
terms of the CDF. Since we have an unbiased and consistent estimate of the CDF (the EDF), we can obtain
estimates of the parameters of interest by simply ”plugging-in” the EDF for the CDF in the functional
formula.
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Property 34 (Some useful functionals and their plugin estimators).

1. Mean: µ = TMean(F ) =
∫
xdF (x) is the mean functional. The Plug-in estimate is as follows:

µ̂ = TMean(F̂n)

=

∫
xdF̂n(x)

=
∑

X1,...,Xn

x p̂(x)︸︷︷︸
1
n

=
1

n

n∑
i=1

Xi = X̄n

2. Variance: σ2 = TVar(F ) =
∫
x2dF (x)−

(∫
xdF (x)

)2
is the variance functional. The Plug-in estimate

is as follows:

σ̂2 = TVar(F̂n)

=

∫
x2dF̂n −

(∫
xdF̂n

)2

=

∑
X2
i

n
−
(∑

Xi

n

)2

=
1

n

∑
(Xi − X̄n)2

3. α-quantile: θα = Tα(F ) = F−1(α) is the α-quantile functional. The Plug-in estimate is as follows:

θ̂α = TCov(F̂n)

= F̂−1
n (α) (The α-sample quantile)

4. Covariance: Suppose (X1, Y1), . . . , (Xn, Yn)
iid∼ F (x, y). θCov(F ) = T (F ) = E(XY ) − E(X)E(Y ) =∫

xydF (x, y)−
∫
xdF (x, y)

∫
ydF (x, y) is the covariance functional. The Plug-in estimate is as follows:

θCov(F̂n) = TCov(F̂n)

=
1

n

∑
XiYi − X̄nȲn

=
1

n

∑
(Xi − X̄n)(Yi − Ȳn)

5. Correlation: θCor(F ) = T (F ) = T1(F )√
T2(F )T3(F )

, where T1(F ) is the covariance functional and T2(F ),

T3(F ) are the variance functionals with respect to X and Y respectively. We define the functional as:

T (F ) =

∫
xydF (x, y)− (

∫
xdF (x, y))(

∫
ydF (x, y))√(∫

x2dF (x)−
(∫
xdF (x, y)

)2)(∫
y2dF (y)−

(∫
ydF (x, y)

)2)
The plug-in estimator is as follows:

T (F̂n) =
1
n

∑
(Xi − X̄n)(Yi − Ȳn)√

1
n

∑
(Xi − X̄n)2 1

n

∑
(Yi − Ȳn)2
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6. Linear regression: Recall that the risk (prediction error) of a linear regression is R(α, β) = E[(Y −
α− βX)2] which is writeable in the functional form: θα,β =

∫
(y − α− βx)dF (x, y). The least squares

functional is: θLSE = argmin
α,β

∫
(y − α− βx)dF (x, y). Our plug-in estimators are as follows:

θα,β(F̂n) =
1

n

∑
(Yi − α− βXi)

2

θLSE(F̂n) = argmin
α,β

1

n

∑
(Yi − α− βXi)

2

Which correspond to the empirical risk and empirical risk minimizer respectively.

7. MLE: The statistical functional of the MLE can be written as:

θ∗ = TMLE(F ) = argmax
θ

∫
log p(x; θ)dF (x)

We obtain this expression:

θ̂ = TMLE(F ) = argmax
θ

1

n

n∑
i=1

log p(xi; θ)

11.3 Delta Method

Definition 64 (Delta Method). Assume we have a sequence of random variables Y1, . . . , Yn such that

√
n(Yn − y0)

D−→ N(0, σ2
Y )

If a function f is differentiable at y0, then using the first order Taylor expansion:

√
n(f(Yn)− f(y0)) =

√
n ((Yn − y0)f ′(y0) + higher order terms)

≈ f ′(y0)︸ ︷︷ ︸
fixed

√
n(Yn − y0)︸ ︷︷ ︸

Converges in dist

D−→ N(0, σ2
Y |f ′(y0)|2), Var(f(Yn)) ≈ 1

n
|f ′(y0)|2σ2

Y

11.4 Linear functionals, Influence Functions, and Nonlinear functionals

Definition 65 (Linear functional). A linear functional is of the form:

Tω(F ) =

∫
ω(x)dF (x) (= E(ω(x)))

Where ω is a function.
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Definition 66 (Influence function). The influence function of a linear statistical functional is:

LF (x) = ω(x)− Tω(F )

= ω(x)−
∫
ω(x)dF (x)

Property 35 (Properties of Influence function of linear functional). Suppose Tω is a linear functional with
influence function LF (x). Then:

√
n
(
Tω(F̂n)− Tω(F )

)
D−→ N

(
0,

∫
L2
f (x)dF (x)

)
Thus:

E(LF (x)) = 0

Var(Tω(F )) =

∫
L2
f (x)dF (x)

And a consistent estimator for the Var(Tω(F )) is

Var(Tω(F̂n)) =
1

n

∑
L2
F (Xi)

Property 36 (Influence function of non-linear functional). Consider the median functional (which is non-
linear): Tmed(F ) = F−1(0.5). To analyze the properties of this functional, we need a different notion of
influence function. The influence function of a general statistical functional Ttarget is:

LF (x) = lim
ε→0

Ttarget((1− ε)F + εδx)− Ttarget(F )

ε

Where δx denotes a point mass at x. This expression is a special kind of derivative that perturbs the CDF
by adding a point mass at x.

11.5 Bootstrap

Definition 67 (The Bootstrap algorithm). Bootstrapping is a nonparametric method for assessing the
uncertainty of an estimate. The process is quite simple. Given data X1, . . . , Xn and a statistic of interest
Mn from the data:

1. Generate a bootstrap sample, X∗1 , . . . , X
∗
n, by sampling with replacement from the n data points.

2. Calculate the bootstrap sample statistic, M∗n
(1) from the bootstrap sample.

3. Repeat steps (1), and (2) B times, yielding M∗n
(1), . . . ,M∗n

(B)

Once we have our distribution of bootstrap statistics, M∗n
(1), . . . ,M∗n

(B):
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1. Bootstrap estimate of variance: V̂arB(Mn) is an estimate of Var(Mn) where

V̂arB(Mn) =
1

B − 1

B∑
i=1

(
M∗(i)n − M̄∗B

)2

2. Bootstrap estimate of the MSE:

M̂SE(Mn) =
1

B

B∑
i=1

(
M∗(i)n −Mn

)2

3. Bootstrap CI: we can construct a 1− α CI:

Mn ± z1−α/2

√
V̂arB(Mn)

Property 37 (When and why the Bootstrap works). Consider the CDF of the median, Mn, which is
determined by the data distribution, F , and the sample size, n:

FMn
(x) = Ψ(x;F, n)

When we sample with replacement from our data, X1, . . . , Xn, each element has a 1
n chance of being selected

at each draw. Thus, we are sampling from the EDF, F̂n! Thus, the CDF of the bootstrap sample median is:

F
M
∗(i)
n

(x) = Ψ(x; F̂n, n)

Since F̂n is a good approximation of F under sufficiently large samples, then as long as Ψ is smooth:

F̂n ≈ F =⇒ F
M
∗(i)
n

(x) ≈ FMn
(x)

Meaning the CDF of the bootstrap median approximates the CDF of the true median. And then the variance
of the bootstrap median approximates the variance of the median itself.
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12 General Strategies

12.1 Finding distribution of random variables

1. Use first principles and find the CDF: P (X ≤ x...

2. Perform a transformation from a known random variable (single variable or multivariable w/ Jacobian
method)

3. Use MGFs. This is especially useful when X,Y, Z are independent and we want the distribution of
X + Y + Z

4. Use definition of known distributions (e.g., counting blue balls drawn with replacement from bag filled
with blue/green balls – binomial dist)

5. Are these ordered statistics?

6. Use properties of known distributions (e.g., sum of independent Poisson RVs is Poisson / Sum of
independent exponentials is gamma).

12.2 Showing independence

1. Show that the joint density is the product of the marginals

2. Show that P (X|Y = y) does not depend on y (be careful with support)

3. Use properties of normal distribution (e.g., for X MVN, independence of Xi, Xj ⇐⇒ Xi, Xj are
uncorrelated, or S2

n ⊥ X̄n)

12.3 Computing expectations, variances, and covariances

1. Cite E(X),Var(X) of known distributions

2. Use definition

3. Use iterated law of total expectation, variance, or covariance tricks

12.4 Convergence of RVs

1. Employ Hoeffding, Markov, Chebyshev inequalities as necessary. Chebyshev is very useful for conver-
gence in probability when Variance is shrinking with n.

2. Strong/Weak LLN: use when you have sample means and WTS convergence in probability.

3. CLT: use when we want to show convergence in distribution when format looks like
√
n(X̄n − ·)

D−→
N(·, ·)

4. CLT followed by delta method

5. Slutsky’s theorem (for convergence in distribution) or Continuous mapping theorem (for either conver-
gence in distribution or probability)

6. MGFs: convergence of MGFs ⇐⇒ convergence in distribution. If you only have access to the
conditional MGF, use law of total expectation!
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12.5 Finding MLE

1. Find the log-likelihood and maximize it

2. If log-likelihood is not differentiable, are there other ways to maximize this? Consider the likelihood
maximization more broadly.

3. Use invariance property of MLE

12.6 Different definitions of e

1. Limit definition: lim
n→∞

(
1 + x

n

)n
= ex

2. Power series:
∑
n≥0

x
n! = ex

12.7 Taylor expansion

1. The Taylor expansion about an infinitely differentiable function at value a is:

f(a) +
f
′(a)

1!
(x− a) +

f
′′
(a)

2!
(x− a)2 + . . . =

∞∑
n=0

f (n)(a)

n!
(x− a)b

12.8 Useful identities

1. Markov Inequality: P (X ≥ ε) ≤ E(X)
ε .

2. Chebyshev Inequality: P (|X − E(X)| ≥ ε) ≤ Var(X)
ε2

3. Jensen’s inequlaity: φ(E(X)) ≤ E(φ(X)) where φ is convex function

4. Geometric series:

• Finite: for r 6= 1,
∑n
i=0 ar

i = a( 1−rn+1

1−r

)
• Infinite: if r < 1,

∑∞
i=0 ar

i = a
1−r

5. Exponential sums

• Finite:
∑N−1
n=0 p

ieinx = 1−eiNx
1−eix

• Infinite:
∑∞
n=0 p

neinx = 1
peix−1

6. Calculus tricks:

• Quotient rule: if f(x) = g(x)/h(x), f ′(x) = g′(x)h(x)−g(x)h′(x)
h(x)2

• Integration by parts:
∫
udv = uv −

∫
vdu

• Integrating over two random variables: bounds of interior integral can be in terms of other RV,
exterior bounds must be numeric.
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