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A Review of Last time
1 Parametric survival models assume a particular shapeof the distribution of survival times, which are governedby a finite set of parameters.
2 We showed parametric models are convenient forestimation and converting between hazards, survivalfunctions, and single-number summaries of the survivalexperience.
3 Maximum likelihood enables estimation and inferenceon the parameters from data.
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Some HW 1 Concepts to Review
1 Truncation

1 Truncation versus censoring.
2 Truncation ⊂ Selection Bias.
3 Redefining time origin (t = 0).

2 ‘fitparametric’ capabilities – “mean”, “quantile”, “survival”,“condsurvival”
3 Significance testing

1 Goodness of fit (different models fit to same data): likelihoodratio test
2 Comparing survival distribution between parametric models:Wald test on derived model parameters
3 Comparing survival distributiosn nonparametrically: Logranktest or variant.
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Session Overview

1 Nonparametric Survival Curve Estimation

2 Nonparametric Estimation of Other Survival Quantities

3 Nonparametric comparison Survival Curves

Ethan Ashby
Lecture 3



Nonpar Other Logrank

Why go nonparametric?
The use of parametric models are often justified using

1 Convenience: ease of converting between survival quantitiesof interest, relatively simple estimation.
2 Efficient: when correctly specified, parametric models produceestimators w/ smallest possible variances.

Reasons why we may want to go nonparametric
1 Agnosticism around choice of model.
2 True survival experience unlikely to adhere to rigidparametric assumptions.
3 Conclusions that avoid making non-essential statisticalassumptions.
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Motivating Example for Kaplan-Meier Estimator
Consider the following survival data. Unique event times in red.

Patient Survival Time Status1 7 02 6 13 6 04 5 05 2 16 4 1
Suppose we wish to estimate the survival function S(t) withoutmaking parametric assumptions on the shape of the distributionof survival times.
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Kaplan-Meier Curve Example
Suppose we construct the following table where ti denotes a specific timeof interest, ni are the number of participants in the risk set, di are thenumber of events that occurred at ti , qi are the number censored at ti .

ti ni di qi P(Event at ti |At Risk at ti) =
di
ni1 6 0 0 0

6

2 6 1 0 1
63 5 0 0 0
54 5 1 0 1
55 4 0 1 0
46 3 1 1 1
37 1 0 1 0
1
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Kaplan-Meier Curve ExampleSuppose we are interested in estimating the survivor curve
S(t) = P(T ≥ t)

We can break time into a bunch of intervals of unit length.
S(t) = P(T ≥ t |T ≥ t − 1)× P(T ≥ t − 1)

= P(T ≥ t |T ≥ t − 1)× S(t − 1)

. . . Iterate
=

t∏
i=1

P(T ≥ i |T ≥ i − 1)

≡
t∏

i=1

(1 − P(T ≤ i |T ≥ i − 1))

≡
t∏

i=1

(1 − P(Event at time i |At Risk at Time i))
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Kaplan-Meier Curve Example
S(t) =

t∏
i=1

(1 − P(Event at time i |At Risk at Time i))

We can estimate pink term using the observed number of
events at time i over the observed number at risk at time i .

P̂(Event at time i |At Risk at Time i) =
di

ni

Yielding
Ŝ(t) =

t∏
i=1

(
1 − di

ni

)
Ethan Ashby
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Kaplan-Meier Curve Example
So far

Ŝ(t) =
t∏

i=1

(
1 − di

ni

)
Recall that di ̸= 0 if and only if an event (di = 1) occurred at time i .Hence, it suffices to consider the product over the failure times,
ti ≤ t :

Ŝ(t) =
∏
ti≤t

(
1 − di

ni

)

Ethan Ashby
Lecture 3



Nonpar Other Logrank

Kaplan-Meier Curve Example
ti ni di qi P̂(Event at ti |At Risk at ti) =

di
ni

Ŝ(t) =
∏

ti≤t

(
1 − di

ni

)
0 6 0 0 0

6

(
1 − 0

6

)
= 1

1 6 0 0 0
6

(
1 − 0

6

)
= 1

2 6 1 0 1
6 1 ·

(
1 − 1

6

)
= 5

63 5 0 0 0
5

5
6 ·
(
1 − 0

5

)
= 5

64 5 1 0 1
5

5
6 ·
(
1 − 1

5

)
= 2

35 4 0 1 0
4

2
3 ·
(
1 − 0

4

)
= 2

36 3 1 1 1
3

2
3 ·
(
1 − 1

3

)
= 4

97 1 0 1 0
1

4
9 ·
(
1 − 0

1

)
= 4

9
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Kaplan-Meier Curve Example
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The Kaplan-Meier Estimator
The Kaplan-Meier Estimator is the product over the failuretimes of the conditional probabilities of surviving to the nextfailure time.

Ŝ(t) =
∏
ti≤t

(
1 − di

ni

)

Where ni is the number of individuals in the risk set at time tiand di is the number of individuals who failed at time ti .
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The Kaplan-Meier Estimator
Ŝ(t) =

∏
ti≤t

(
1 − di

ni

)

The Kaplan-Meier (KM) estimator
1 Makes no assumptions on the distribution of event times.
2 Accommodates censored data by letting censoredobservations contribute to the risk set ni .
3 Assumes Non-informative Censoring:

P̂(Event at ti |At Risk at ti) = di
ni

unbiased for
P(Event at ti |At Risk at ti).

4 Assumes that survival is constant between observed events.
Ethan Ashby
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NPMLEThe K-M estimator can be considered as the maximum likelihoodestimator of the discrete hazard function. Let hi be the hazard ofexperiencing an event at time ti .
S(t) =

∏
ti≤t

(1 − hi)

Since failures are Bernoulli events, a binomial likelihood up to time ti canbe written as
L(hj ; j ≤ i) =

i∏
j=1

h
dj
j (1 − hj)

nj−dj

(
nj

dj

)

Hence, the maximum likelihood estimator for hj is given by
ĥj =

dj

nj

Plugging in ĥj for hj above gives the KM estimator.
Ethan Ashby
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R example
1 #Calculate KM estimator
2 l i b r a r y ( s u r v i v a l )
3 t t<−c ( 7 , 6 , 6 , 5 , 2 , 4 )
4 cens<−c ( 0 , 1 , 0 , 0 , 1 , 1 )
5 Surv ( t t , cens ) #formatted as time to event
6 r e s u l t .km<−s u r v f i t ( Surv ( t t , cens ) ˜1 , conf . type= ” log − log ” )
7 summary ( r e s u l t .km) #output table
8 plot ( r e s u l t .km) #plot KM curve w/ pointwise CIs
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Nelson-Aalen Estimator
Suppose we wish to estimate the cumulative hazard.

H(t) =
∑
ti≤t

di

ni

And recognizing that S(t) = e−H(t), we have similar estimatorof the survival function. In R, we we fit it as follows.
1 r e s u l t .km<−s u r v f i t ( Surv ( t t , cens ) ˜1 , conf . type= ” log − log ” ,type= ” fh ” )
2 summary ( r e s u l t .km) #output table
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Single-Number Summaries of the SurvivalExperience

We may be interested in the median survival time defined as
t̂med = inf{t : Ŝ(t) ≤ 0.5}

By default, “survfit” prints out the estimate and 95% CI forthe median.

Ethan Ashby
Lecture 3



Nonpar Other Logrank

Hazard Estimation Via Smoothing
Suppose we are interested in estimating and examining the
hazard function h(t) := lim∆t→0

P(t<T≤t+∆t |T≥t)
∆t .

Nelson-Aalen estimates of the hazard function will be 0 withbumps of height di/ni at each event time ti . This is veryunstable estimator with high error.
ĥNA(t) =

D∑
i=1

I(t(i) = t) · di

ni

Smoothing helps us reduce noise by borrowing localinformation to produce a more stable estimator.
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Hazard Estimation Via Smoothing: Illustration
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Not necessary but interesting
In mathematical terms, smoothed hazard estimation isaccomplished using a kernel estimator

ĥ(t) =
1
b

D∑
i=1

K
(

t − t(i)
b

)
di

ni

Where t(1), . . . , t(D) are the unique failure times, and K is anon-negative function that assigns more weight to di/ni if t is closeto an observed failure time t(i).
The bandwidth b controls how much smoothing is performed.
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Hazard Estimation Via Smoothing: In R
1 l i b r a r y (muhaz)
2 t . vec<−c ( 7 , 6 , 6 , 5 , 2 , 4 )
3 cens . vec<−c ( 0 , 1 , 0 , 0 , 1 , 1 )
4 r e s u l t . smooth<−muhaz( t . vec , cens . vec ,max. time =8 , bw. gr id=2.25 , bw. method= ” global ” , b . cor= ”none” ) #smoothed
5 r e s u l t s . sparse<−pehaz ( t . vec , cens . vec , width =1 ,max. time =8)#sparse
6 plot ( r e s u l t . smooth )
7 l i n e s ( r e s u l t s . sparse )

Set “bw.option”=“local” to automatically choose level of smoothing
that adapts to the frequency of events in different regions.
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Smoothed Estimation of Survival Function
Recall that S(t) = e−

∫ t
0 h(u)du by definition. Hence, we canreplace h(u) by its smoothed estimate ĥ(u) to obtain asmoothed estimator of the survival function.

In R, we do this
1 haz <− r e s u l t . smooth$haz . est
2 times <− r e s u l t . smooth$est . gr id
3 surv <− exp(−cumsum( haz [ 1 : ( length ( haz ) −1) ]* d i f f ( times ) ) )
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Roadmap

1 Nonparametric Survival Curve Estimation

2 Nonparametric Estimation of Other Survival Quantities

3 Nonparametric comparison Survival Curves
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Motivation

Thus far, we have discussed nonparametric estimation ofsurvival quantities of interest such as the survivor function,hazard function, etc.
In many practical situations, we may also wish to testwhether the survivor curves are significantly differentbetween two groups.
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Testing equivalent survival between two groups
We propose a null hypothesis of H0 : S0(t) = S1(t).
We wish to develop a test statistic T which quantifies thediscrepancy between S0(t) and S1(t) based on the datawithout relying on parametric assumptions.
A good starting point: Kaplan-Meier curves give usnonparametric estimates of S0(t), S1(t).

An idea: let T be the “distance” from group 1 K-M estimator,
Ŝ1(t), to pooled K-M estimator under H0, Ŝ(t).
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Logrank Test

At risk EventsRow t(i) n0i n1i d0i d1i1 2 10 10 1 02 5 9 10 1 03 7 8 10 1 04 8 7 10 1 15 11 6 9 1 0... ... ... ... ...

Under H0, we assume
S0(t) = S1(t) = S(t). Hence, wecan calculate an expected eventcount for each cell under H0:
eji :=

(
nji

n0i + n1i

)
︸ ︷︷ ︸
Prop at Risk at t(i)

× (d0i + d1i)︸ ︷︷ ︸
Total Failures at t(i)
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Logrank Test
At risk Events Expected EventsRow t(i) n0i n1i d0i d1i e0i e1i1 2 10 10 1 0 10

20 × (1 + 0) = 1
2

10
20 × (1 + 0) = 1

22 5 9 10 1 0 9
19 × (1 + 0) = 9

19
10
19 × (1 + 0) = 10

193 7 8 10 1 0 8
18 × (1 + 0) = 8

18
10
18 × (1 + 0) = 10

184 8 7 10 1 1 7
17 × (1 + 1) = 14

17
10
17 × (1 + 1) = 20

175 11 6 9 1 0 6
15 × (1 + 0) = 6

15
9

16 × (1 + 0) = 9
16... ... ... ... ... ... ... ...

Logrank Statistic =

(∑
t(i)
(d1i − e1i)

)2

Var(d1i − e1i)
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Logrank Test: Some Extra Info

Logrank Statistic =

(∑
t(i)
(d1i − e1i)

)2

Var(d1i − e1i)

The variance formula is derived from a hypergeometricdistribution which models the probability of d1i group 1 failures in
d0i + d1i random draws when the size of group 1 is n1i and thetotal at risk is n1i + n0i .

Var(d1i − e1i) =
∑
t(i)

n0in1i(d0i + d1i)(n0i + n1i − d0i − d1i)

(n0i + n1i)2(n0i + n1i − 1)
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Key Result!
When H0 is true,

Logrank Statistic =

(∑
t(i)
(d1i − e1i)

)2

Var(d1i − e1i)
∼ χ2

1

Hence, one can compare the logrank test statistic to thequantiles of a chi-square distribution with DOF=1.
If the statistic exceeds the (1 − α) quantile, we can reject thenull hypothesis H0 at level α, and claim the survival curvesare significantly different!
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Logrank Test: in R

1 l i b r a r y ( s u r v i v a l )
2 t t<−c (6 ,7 ,10 ,15 ,19 ,25)
3 delta<−c ( 1 , 0 , 1 , 1 , 0 , 1 )
4 t r t<−c ( 0 , 0 , 1 , 0 , 1 , 1 )
5 s u r v d i f f ( Surv ( t t , del ta ) ˜ t r t )
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Some Extensions
Look closely at the Logrank statistic

Logrank Statistic =

(∑
t(i)
(d1i − e1i)

)2

Var(d1i − e1i)
∼ χ2

1

Each event time is weighted equally. We can generalize toinclude weights that treat failure times differently

New Statistic =

(∑
t(i)

w(i)(d1i − e1i)
)2

Var(w(i)(d1i − e1i))
∼ χ2

1

Ethan Ashby
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Some Extensions
Name w(i)Logrank 1Wilcoxon-Breslow niTarone-Ware √

niPeto s̃(t(i))Fleming-Harrison Ŝ(ti−1)
p[1 − Ŝ(ti−1)]

q

Key Takeaways
1 Logrank test weights each failure time equally,Wilcoxon-Breslow/Traone-Ware/Peto weight earlier survivaltimes more, Fleming-Harrison offers flexibility.
2 “Best test” is the one with the most power – where do youexpect the survival curves to be most different?
3 Choice MUST be made a priori to avoid p-hacking.
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Logrank Test Variants: in R

1 l i b r a r y ( s u r v i v a l )
2 t t<−c (6 ,7 ,10 ,15 ,19 ,25)
3 delta<−c ( 1 , 0 , 1 , 1 , 0 , 1 )
4 t r t<−c ( 0 , 0 , 1 , 0 , 1 , 1 )
5 s u r v d i f f ( Surv ( t t , del ta ) ˜ t r t , rho =0) #Logrank
6 s u r v d i f f ( Surv ( t t , del ta ) ˜ t r t , rho =1) # Peto−Prent ice
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Summary
1 Nonparametric survival methods are often preferredbecause they avoid making unnecessary assumptionswhich can invalidate inference.
2 The Kaplan-Meier estimator is the most commonestimator of the survival curve.
3 Nonparametric estimators of the the hazard functionrequire smoothing to account for noisy data.
4 The Logrank test and its variants are nonparametrictests of the equality of survival distributions.

Ethan Ashby
Lecture 3


	Nonparametric Survival Curve Estimation
	Nonparametric Estimation of Other Survival Quantities
	Nonparametric comparison Survival Curves

