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A Review of Last time

@ Parametric survival models assume a particular shape
of the distribution of survival times, which are governed
by a finite set of parameters.

® We showed parametric models are convenient for
estimation and converting between hazards, survival
functions, and single-number summaries of the survival
experience.

©® Maximum likelihood enables estimation and inference
on the parameters from data.
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Some HW 1 Concepts to Review

@ Truncation

@ Truncation versus censoring.
@ Truncation c Selection Bias.
© Redefining time origin (t = 0).

"o "ou

@ ‘fitparametric’ capabilities - “mean”, “quantile”, “survival”,
“condsurvival”
© significance testing
@ Goodness of fit (different models fit to same data): likelihood
ratio test
@® Comparing survival distribution between parametric models:
Wald test on derived model parameters

© Comparing survival distributiosn nonparametrically: Logrank
test or variant.
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Session Overview

@ Nonparametric Survival Curve Estimation

® Nonparametric Estimation of Other Survival Quantities

© Nonparametric comparison Survival Curves
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Why go nonparametric?

The use of parametric models are often justified using

@ Convenience: ease of converting between survival quantities
of interest, relatively simple estimation.

@ Efficient: when correctly specified, parametric models produce
estimators w/ smallest possible variances.

Reasons why we may want to go nonparametric
@ Agnosticism around choice of model.

@ True survival experience unlikely to adhere to rigid
parametric assumptions.

© Conclusions that avoid making non-essential statistical
assumptions.

Ethan Ashby
Lecture 3



Nonpar

O@0000000000

Motivating Example for Kaplan-Meier Estimator

Consider the following survival data. Unique event times in red.

Patient | Survival Time

Status

ok WwWN-—
A NGO O

—_ 00 -0

Suppose we wish to estimate the survival function S(t) without
making parametric assumptions on the shape of the distribution

of survival times.
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Kaplan-Meier Curve Example

Suppose we construct the following table where t; denotes a specific time
of interest, n; are the number of participants in the risk set, d; are the
number of events that occurred at t;, g; are the number censored at t;.

t | m | d | g | P(Eventat t;|AtRisk at t;) = %
1161010 g
216|110 :
3(5/0]0 0
415111]0 1
5040/ 0
63|11 :
71100 0

[m] =P = =
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Kaplan-Meier Curve Example

S(t) =P(T > 1)
We can break time into a bunch of intervals of unit length.

Suppose we are interested in estimating the survivor curve
SY=P(T>tT>t—-1)xP(T>t-1)

=P(T>H{T>t—-1)xS(t-1)
...lterate

i=1

t
=[[P(T=iT>i-1)

t

=[] (1 — P(Event at time /At Risk at Time /)
i=1
[m] =) - = o™
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Kaplan-Meier Curve Example

i=1

S(t) = [ [ (1 — P(Event at time i|At Risk at Time /))

We can estimate pink term using the observed number of
events at time i over the observed number at risk at time i.
Yielding

P(Event at time j|At Risk at Time /) =

g

n;
t
~ d;
s0-11(1-)
i=1
o = = = DA
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So far

Kaplan-Meier Curve Example

_a
nj
Recall that d; # 0 if and only if an event (d; = 1) occurred at time i

Hence, it suffices to consider the product over the failure times,

n;
o (=] = = (2K -N&%
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Kaplan-Meier Curve Example

t| n | d| a | P(Eventat|AtRiskatt) =2 | §(t) =], (1 —%)
06|00 g -0 =
1600 § (1-8) =
216|110 : 1-(1-1H=2
3500 g e (1-9)=2
4ls|1]o ! -(0-4=3
50401 g s 0-9=%
6131 |1 ! 5(1-3)=4%
71101 0 s-(1-9=3
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Kaplan-Meier Curve Example
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The Kaplan-Meier Estimator

The Kaplan-Meier Estimator is the product over the failure
times of the conditional probabilities of surviving to the next
failure time.

é(t):g(1 - %)

Where n; is the number of individuals in the risk set at time ¢;
and d; is the number of individuals who failed at time t;.

Ethan Ashby
Lecture 3



Nonpar
000000000800

The Kaplan-Meier Estimator

. d:
so-11(+-2)
t<t
The Kaplan-Meier (KM) estimator
@ Makes no assumptions on the distribution of event times.

® Accommodates censored data by letting censored
observations contribute to the risk set n;.

© Assumes Non-informative Censoring:

N

P(Event at f;|At Risk at ) = & unbiased for
P(Event at t;|/At Risk at t;).

@ Assumes that survival is constant between observed events.
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NPMLE

The K-M estimator can be considered as the maximum likelihood
estimator of the discrete hazard function. Let h; be the hazard of
experiencing an event at time §.

Sty=J]01-h)

<t

Since failures are Bernoulli events, a binomial likelihood up to time ¢ can
be written as

Lhj<i=]] h;jj“ — hy)"9 (Z’)
=1 !

Hence, the maximum likelihood estimator for h; is given by

Plugging in f1,- for h; above gives the KM estimator.
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R example

#Calculate KM estimator

library (survival)

tt<-c(7,6,6,5,2,4)

cens<-c(0,1,0,0,1,1)

Surv(tt,cens) #formatted as time to event
result.km<-survfit(Surv(tt,cens)™1,conf.type="log-log")
summary(result.km) #output table

plot(result.km) #plot KM curve w/ pointwise Cls

00 N O 1AW N =

o = = = DA
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Nelson-Aalen Estimator

Suppose we wish to estimate the cumulative hazard.
H(t) = g

n;
<t

And recognizing that S(t) = e~ "), we have similar estimator
of the survival function. In R, we we fit it as follows.

result.km<—survfit(Surv(tt,cens)™1,conf.type="log-log",
type="fh")
summary(result.km) #output table

N
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Single-Number Summaries of the Survival

A

We may be interested in the median survival time defined as

fneq = inf
the median.

{t: 5(t) <05}

By default, “survfit” prints out the estimate and 95% ClI for

o = = = DA™
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Hazard Estimation Via Smoothing

Suppose we are interested in estimating and examining the

hazard function h(t) := lima o 2UST=IEAITZ0,

Nelson-Aalen estimates of the hazard function will be 0 with
bumps of height d;/n; at each event time ¢;. This is very
unstable estimator with high error.

Smoothing helps us reduce noise by borrowing local
information to produce a more stable estimator.
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Hazard Estimation Via Smoothing: lllustration
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Not necessary but interesting

In mathematical terms, smoothed hazard estimation is
accomplished using a kernel estimator

D
. t—10 d

Where ty), ..., {p)y are the unique failure times, and K'is a
non-negative function that assigns more weight to d;/n; if t is close
to an observed failure time ;.

The bandwidth b controls how much smoothing is performed.
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Hazard Estimation Via Smoothing: In R

library (muhaz)

t.vec<—c(7,6,6,5,2,4)

cens.vec<-c(0,1,0,0,1,1)

result.smooth<-muhaz(t.vec, cens.vec,max.time=8, bw. grid
=2.25, bw.method="global”, b.cor="none"”) #smoothed

s| results.sparse<—pehaz(t.vec,cens.vec,width=1,max.time=8)

#sparse

6| plot(result.smooth)

7/ lines(results.sparse)

A W -

Set “bw.option"="local” to automatically choose level of smoothing
that adapts to the frequency of events in different regions.
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Smoothed Estimation of Survival Function

Recall that S(t) = e~ Jo W) pyy definition. Hence, we can
replace h(u) by its smoothed estimate h(u) to obtain a
smoothed estimator of the survival function.

In R, we do this

haz <- result.smooth$haz. est
times <- result.smooth$est. grid
3l surv <— exp(-cumsum(haz[1:(length(haz)-1)]*diff(times)))

N =
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© Nonparametric comparison Survival Curves
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Motivation

Thus far, we have discussed nonparametric estimation of

survival quantities of interest such as the survivor function,
hazard function, etc.

In many practical situations, we may also wish to test

whether the survivor curves are significantly different
between two groups.
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Testing equivalent survival between two groups
We propose a null hypothesis of Hy : Sp(t) = S1(1).

We wish to develop a test statistic T which quantifies the
discrepancy between Sy(t) and Si(t) based on the data
without relying on parametric assumptions.

A good starting point: Kaplan-Meier curves give us
nonparametric estimates of Sy(t), Si(¢).

An idea: let T be the “distance” from group 1 K-M estimator,
54(t), to pooled K-M estimator under Hy, S(t).
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Logrank Test

Atrisk  Events
Row  f;) | Noi | mi | Qoi | Ohi

1 2 110110 1 0

2 519 10| 1 0

3 71 8 [10] 1 0

4 8 7 110 1 1

5 111 6 9 1 0

Under Hp, we assume

So(t) = Si(t) = S(t). Hence, we
can calculate an expected event
count for each cell under Hy:

n.‘
i
g = x (doj + dy)
Ji 0/ 1i
(no:' + n1i> —_——
~————— Total Failures at f;
Prop at Risk at
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Logrank Test
Atrisk  Events Expected Events
Row  tGy | moi | M | doi | dhi €oi e1j
1 2 (10[10[ 1[0 BxA+0)=3 | 8x(1+0)=1
2 509 (1010 |[ZIx(1+0)=35 | x(1+0)=12
3 708101 |0 |&Zx(A4+0=F% | ¥Ix+0=12
4 8|7 1101 |1 |Ex(A+N)=1]%x(0+1)=%
5 M6 [9 1[0 |&x(140)=5%|Fx(1+0)=2I
2
(D @i—en)
Logrank Statistic =

Var(d1,- - 61,')
- - =

o
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Logrank Test: Some Extra Info

(5 (@i~ ew)’

Logrank Statistic =
& Var(d1,- — 61,')

The variance formula is derived from a hypergeometric
distribution which models the probability of dy; group 1 failures in

do; + di; random draws when the size of group 1 is ny; and the
total at risk is ny; + ng;.

Var(dhi —e) = 3 NoiMi(oi + chi)(Noi + Mi — doj — dhj)

P (Moi + n1i)2(noi + nyj — 1)
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Key Result!

When Hj is true,

2
(Zt(,)(dﬁ — e1i)> )
Var(dy; — ey;) X

Logrank Statistic =

Hence, one can compare the logrank test statistic to the
quantiles of a chi-square distribution with DOF=1.

If the statistic exceeds the (1 — «) quantile, we can reject the

null hypothesis Hy at level o, and claim the survival curves
are significantly different!
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Logrank Test: in R

library(survival)
tt<-c(6,7,10,15,19,25)
delta<-c(1,0,1,1,0,1)
trt<-c(0,0,1,0,1,1)

survdiff (Surv(tt,delta) trt)

u A W N =

o = = = fae
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Some Extensions

Look closely at the Logrank statistic

(Et(,-)(dﬁ - 6‘1/))2

Logrank Statistic = ~ Y2
& Var(dy; — ey;) X

Each event time is weighted equally. We can generalize to
include weights that treat failure times differently

(S, wideh—en)).
Var(w(i)(dy — en)) ¢

Ethan Ashby
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Some Extensions

Name w(i)
Logrank 1
Wilcoxon-Breslow n;
Tarone-Ware Vi
Peto g(t(,'))
Fleming-Harrison | S(t_1)P[1 — 8(t_1)]¢

Key Takeaways

@ Logrank test weights each failure time equally,
Wilcoxon-Breslow/Traone-Ware/Peto weight earlier survival
times more, Fleming-Harrison offers flexibility.

@ "Best test” is the one with the most power - where do you
expect the survival curves to be most different?

© Choice MUST be made a priori to avoid p-hacking.
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Logrank Test Variants: in R

library (survival)

tt<-c(6,7,10,15,19,25)

delta<-c(1,0,1,1,0,1)

trt<-c(0,0,1,0,1,1)

survdiff(Surv(tt,delta) ™ trt, rho=0) #Logrank
survdiff (Surv(tt,delta)”trt, rho=1) # Peto—-Prentice

o A W N =

=] =
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Summary

@ Nonparametric survival methods are often preferred
because they avoid making unnecessary assumptions
which can invalidate inference.

® The Kaplan-Meier estimator is the most common
estimator of the survival curve.

© Nonparametric estimators of the the hazard function
require smoothing to account for noisy data.

@ The Logrank test and its variants are nonparametric
tests of the equality of survival distributions.
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