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Review of Last Time

@ Parametric survival methods offer convenient
estimation but often suffer from unmet assumptions.

® Nonparametric survival methods are often preferred
because they enable estimation and inference without
making unnecessary assumptions.

© The Kaplan-Meier estimator is the most common
estimator of the survival curve.

@ Nonparametric estimators of the the hazard function
require smoothing to account for noisy data.

© The Logrank test and its variants are nonparametric
tests of the equality of survival between groups.
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Presentation Overview

@ More on the Logrank Test
® The Cox Regression Model

© Cox Modellingin R
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The Logrank Test: A Review

The logrank test is a test of the equality of survivor curves
across two groups Hp : So(t) = Si(t).

Formally, the test is based on the logrank statistic which
depends on the sum over all the unique failure times of the
observed minus expected failures under Hy.
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Logrank Statistic = =0
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Motivating the Stratified Logrank Test

Suppose we wish to pursue a study to test whether smoking
has a causal effect on lung-cancer free survival.

We sample a cohort of smokers and non-smokers without
lung cancer from a registry, and we follow them to their lung
cancer diagnosis or end of study.

Suppose we wish to test Hy : Ssmoke(t) = Sno smoke(f) USINg a
logrank test.

What are some potential limitations of this analysis?
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Introducing the Stratified Logrank Test

Solution: calculate observed minus expected event counts separately
within groups of participants with the same confounder (e.g., alcohol
consumption)

(O — E)no Alcohol = (Z(d{\‘iof\lc _ engio Alc))

i)
(O = E)arcohol = (Z(dﬁlc _ e¢}°)>
i)

We then pool observed minus expected event counts across levels of the
confounder

(O-E) _ Zses(o_E)S ':/3 2
Var(O—E) ~ 3,.sVar(O—E), ~ XIsi-
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Stratified Logrank Test: in R

library (survival)

N

survdiff (Surv(tt,delta) “smoke+strata(alcohol), rho=0)
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Introducing Stratified Logrank Test
The stratified logrank test is a good idea if

@ The exposure of interest (e.g., smoking) is not randomly
assigned and is likely entangled with other explanatory
variables called confounders (e.g., alcohol consumption)
which may affect the outcome.

® There exist a small number of discrete variables which are
believed to contribute all/most of the confounding.

The stratified logrank test is a bad idea if
@ The exposure of interest is randomly assigned.

® There exist many/high-dimensional/continuous variables
believed to be confounders.

© You have a relatively limited sample size.
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Roadmap

® The Cox Regression Model
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Proportional Hazards

The Logrank test is a test of the null hypothesis
Ho : So(t) = Si(t).

The logrank test is designed to distinguish Hy from
Ha : [So(t)]¥ = Si(t) for ¢ # 1.

The alternative hypothesis is equivalent to

Ha : hyi(t) = ¥ho(t), which represents the proportional
hazards assumption.
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What does proportional hazards look like?
h(t)

S(t)
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Group exercise: are the hazards proportional?

Consider the following covariates and opine whether the
proportional hazards assumption will be satisfied.

@ Effect of placebo versus a prevention drug with short
half-life on time-to-influenza.

@ Effect of helmetless versus helmeted cycling on the time
to head injury.

© Effect of each additional $100 monthly income on time
until someone declares they are happy with their life.

Ethan Ashby
Lecture 4



Cox

000080000000 00

Proportional Hazards

One way to compare survival distributions is to assume the
hazards are proportional, hy(t) = 1 hp(t), and test whether

Ho:’(,D:‘IOFHAZ’(/};é‘I.

Key idea: we can incorporate covariates X in the hazard
modifier: ¢ = exp(8X)! Hence, Hy : ¢y =1 <= Hp: 5 =0.

This sets up a very useful framework for regression
modelling of survival data!l
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Overview of Regression and a Challenges

Goal of regression: develop and estimate a meaningful
model relating a set of explanatory variables (covariates) X
and an outcome.

Challenge in Survival Setting:

@ If we adopt a parametric approach: estimation is
possible, but model may not reflect reality.

@ If we adopt a nonparametric approach: how do we
perform estimation and inference esp w/ censored data
and without a likelihood?
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Partial Likelihood

Suppose we want to estimate the survival difference
between two groups (z = 0, 1) assuming hy(t) = 1 ho(t) with
¢ = eP%. Hence ¢y = 1 for z=0and e&° for z = 1.

Suppose we have a set of nin the risk set R;. Suppose we go
to the first failure time t; which was when participant i failed.
The probability that participant i failed at time t; is given by

pr = )
> ker, Nk(tr)
_ wike(t) i
> ker, Ykho(tt) > ke, ¥k
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Partial Likelihood

p1 = )
> ker, i(tr)
_ wike(t) i
 Yoker, Ykho(t)  Yker, Yk

The baseline hazard cancels out in the above expression.

At second event time &, there are n— 1 people in the risk set,
R>. Suppose person j fails. The probability this occurred was

. hi) Y
C Yker, k(B) D ker, Yk
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Partial Likelihood

We can calculate py, po, ..., pr for all the T event times. Then
the partial likelihood of the observed data is the product

L(v) == p1-,p2...PT.

In the partial likelihood, the baseline hazard hy(t), which
describes the potential of experiencing the event in group
z =0, is treated as a nuisance - a statistical quantity not of
direct interest.
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Example
Patient | Survtime | Censor | Group (2) P
1 6 1 0 1
2 7 0 0 1
3 10 1 1 exp(3)
4 15 1 0 1
5 19 0 1 exp(3)
6 25 1 1 exp(3)
pi=s — 1 ho(t) _ 1 =10 _ »
1 3ho(t1)+3’g/}ho(t1) 3y +3 2 3¢y +1
P = 2¢1+1 Pl =1

[m] =P = =
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Example

The partial likelihood L(v) takes the form

._ P
HY) = Go 3@+ s + 1))

Recalling ¢ = &”, the log-partial likelihood takes the form

£(B) = B — log(3€” + 3) — log(3€” + 1) — log(2€” + 1)

The maximum partial likelihood estimator can be solved by finding the
value of 8 which maximizes the partial likelihood score equation.

ol

%:0

This step is often done w/ a computer: yields 3 = —1.326 = ¢) = 0.265!
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Example
Recall our null hypothesis of “no group effect”: Hp : 8 = 0.

One way of testing Hj is to calculate the maximum partial likelihood
estimate 3 and compare it to the null value B, scaled by the standard
error. This is a Wald test.

z = (Beie — o) I0B) = ﬂl%uw»
VIB)

Another way of testing Hp is to evaluate the derivative/slope of the log
partial likelihood function at the null value 8 = 0 and see if it is close to O
(meaning we are near the maximum). This is a Score test.

_ S(8=0) .
Z= Tt S(6=0) = 3 log(L(BN)|
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Example
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Amazing facts about the partial likelihood

© Amazingly, the slope of the partial likelihood function at 8 = 0 is
equivalent to the value of the logrank statistic!

® Unlike the logrank test, the Cox partial likelihood can accommodate
X as discrete or continuous variables.

© The partial likelihood does not account for the particular values of
the failure times - only their orders.

@ The Cox model only assumes h(t|X) = ho(t) exp(8X). Such a model
is a semiparametric model.
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Cox Modelling in R
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© Cox Modelling in R
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Cox Modelling in R
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In R

result.cox<-coxph(Surv(tt,status)~grp)
summary(result.cox)

N

Call: coxph(formula = Surv(tt, status) ~ grp)
n= 6, number of events= 4
coef exp(coef) se(coef) z Pr(>|z|)

grp -1.3261 0.2655 1.2509 -1.06 0.289

exp (coef) exp(-coef) lower .95 upper .95
grp 0.2655 3.766 0.02287 3.082
Concordance= 0.7 (se = 0.187 )
Rsquare= 0.183 (max possible= 0.76 )
Likelihood ratio test= 1.21 on 1 4df, p=0.2715
Wald test = 1.12 on 1 df, p=0.2891
Score (logrank) test = 1.27 on 1 df, p=0.2591
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Summary

@ The Logrank test: Hy : Sp(t) = Si(t) without making
parametric assumptions. Stratified variants enables
control of a few discrete confounders.

® Regression modelling of the effects of covariates, X, on
the survival experience can be done under the
assumption of proportional hazards
h(t|X) = ho(t) exp(5X).

© The Cox partial likelihood is the basis for estimation and
inference on 3.
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