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1 Examples

1.1 Decision Theory

1.1.1 Bayes Rules

Example 1.1 (Bayes rule, admissible, minimax rule under modified squared error loss (P4 Theory Exam
2021)). Suppose Z is a random variable with PMF

pθ(z) = (1− θ)θz z ∈ {0, 1, . . .}

For θ[0, 1). We sih to study the performance of estimators of θ which will be judged by the risk function

R(T, θ) =
EPθ

({θ − T (Z)}2)
1− θ

1. Calculate the Bayes rule. Suppose we have a prior Π with nondegenerate support on [0, 1). To find
the Bayes rule, we minimize the Bayes risk function wrt the action a.

TΠ = argmin
a

Eθ
[
{θ − a}2

1− θ
|Z = z

]

=⇒ a =
Eθ
[

θ
1−θ |Z = z

]
Eθ
[

1
1−θ |Z = z

]
We can write these posterior expectations conditional on Z = z by integrating the value against the
PMF.

TΠ =

∫
θ

1−θ (1− θ)θzdΠ∫
1

1−θ (1− θ)θzdΠ
=

EΠ(θ
z+1)

EΠ(θz)

Which is a ratio of posterior expectations.

2. Prove TΠ is admissible if Π is a fixed prior with nondegenerate support. We know that all unique
Bayes rules are admissible. As shown in part (a), the Bayes rule must satisfy:

TΠ =
EΠ(θ

z+1)

EΠ(θz)
=⇒ [EΠ(θ

z)]TΠ −
[
EΠ(θ

z+1)
]
= 0

Thus, when Π is fixed, TΠ is a solution in X to the problem aX − b = 0 for fixed a, b ∈ R. This is a
linear system of equations with only one solution. Thus, TΠ is the unique Bayes rule and therefore is
admissible.

3. Show constant risk: consider the estimator T (z) = 0.5I(z = 0) + I(z ≥ 1). Show the risk function
is constant over all θ ∈ Θ. Notice that P (Z = 0) = (1− θ)θ0 = (1− θ) therefore P (Z ≥ 1) = θ.

R(T, θ) =
EPθ

({θ − T (Z)}2)
1− θ

=
EPθ

({θ − (0.5I(z = 0) + I(z ≥ 1))}2)
1− θ

=
θ2 − 2θEPθ

(0.5I(z = 0) + I(z ≥ 1)) + EPθ
((0.5I(z = 0) + I(z ≥ 1))2)

1− θ
]]

=
θ2 − θ(1− θ)− 2θ2 + 0.25(1− θ) + θ

1− θ

= 0.25

Therefore, this particular form of T (z) ensures that the risk function R is constant over θ.
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4. Exhibit a minimax estimator: the idea is to find a minimax estimator by finding a prior such that
the Bayes rule developed in part (a) equals the estimator developed in part (c) which has constant risk.
Bayes rule + constant risk implies minimax! Setting our bayes estimator equal to our estimator with
constant risk, we see

EΠ(θ
z+1)

EΠ(θz)
=

1

2
I(z = 0) + I(z ≥ 1)

(z = 0 case) EΠ(θ
1) = E(θ0) · 1

2
I(z = 0) =

1

2

(z = 1 case) EΠ(θ
2) = E(θ1) · I(z ≥ 1) =

1

2
...

This implies that all the moments of EΠ[θ] =
1
2 . The only distribution with constant raw moments is

a Bernoulli distribution with p = 1/2. Thus, TΠ is minimax!
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Example 1.2 (Bayes, Admisible, Minimax Rules in Poisson-Gamma Model (581 Midterm P3)). Suppose
X ∼ Pois(λ). Consider the weighted squared error loss for λ:

L(T (X), λ) :=
(T (X)− λ)2

λ

1. Compute Bayes Estimator when Π ≡ Gamma(λ|a, b) with density baλa−1 exp(−bλ)/Γ(a). First
calculate the form of the posterior:

λ|X ∝ X|λ×Π

∝ λx exp(−λ)
x!

× baλa−1 exp(−bλ)/Γ(a)

∝ λx+a−1 exp(−(b+ 1)λ) ≡ Gamma(x+ a, b+ 1)

Next, we find the form of the Bayes Estimator by minimizing the Bayes risk function with respect to
the action

∂f

∂a
=

∂

∂a
E
[
(a− λ)2

λ

∣∣∣X = x

]
= 0

a =
1

E
[
1
λ |X = x

]
Now, since λ ∼ Gamma(x+1, b+1), 1/λ ∼ Inv Gamma(x+a, b+1) which has mean (b+1)/(x+a−1).
Therefore, the bayes rule takes value

TΠ(x) =
1

(b+ 1)/(x+ a− 1)
=
x+ a− 1

b+ 1

2. Prove T (X) = X is Minimax under loss. Note that under the specified loss

R(X,λ) = E

((
(X − λ)

λ1/2

)2
)

= E(χ2
1) = 1

Thus, the risk function is constant over λ ∈ (0,∞). Our new goal is to construct a sequence of priors
Πk such that

lim
k→∞

r(DΠk
,Πk) = sup

λ
R(X, θ)

We derived the Bayes estimator for Π ∼ Γ(a, b) prior to be x+a−1
b+1 . To prove T (x) = x is minimax, we

can choose the prior sequence Πk ∼ Γ(a = 1 + 1/k, b = 1/k) such that asymptotically, the Bayes rule
DΠk

→ X which will attain the constant risk value demonstrated above. Thus, X is minimax.
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1.1.2 Minimax Rules

Example 1.3 (Sample mean is minimax). Consider X1, . . . , Xn
iid∼ N(θ, σ2) with σ2 known. We claim X̄n

is minimax. Under squared error loss, letting T : X1, . . . , Xn → X̄n

R(X̄n, θ) = E[(X̄n − θ)2] =
σ2

n

Consider the prior sequence Πk := N(0, k). Under this model, the posterior takes the form

θ|X ∼ N

(
x̄nn/σ

2

1/k + n/σ2
,

1

1/k + n/σ2

)
Under squared error loss, the Bayes rule is the posterior mean

r(TΠk
,Πk)− E[(x̄n − θ)2] = E

[(
x̄nn/σ

2

1/k + n/σ2
− θ

)2
]
= E[(x̄n − θ)2] → 0

Thus, sup
θ∈Θ

R(D, θ) = σ2

n = lim
k→∞

r(TΠk
,Πk). This implies X̄n is minimax in P1 := {N(θ, σ2) : θ ∈

R, σ2 known} by Strategy 3 under Finding Minimax Rules.

We can go further and show that X̄n is minimax with respect to distributions with bounded variance. Consider
P2 := {P ∈ Qn; support(Q) ⊂ R,VarQ(X) ≤ σ2)}. Note that for any distribution in P2, by CLT

R(X̄n, θ) =
VarQ(X)

n
≤ σ2

n

Thus, sup
P∈P1

R(D1, P ) = sup
P∈P2

R(D1, P ) implying by Strategy 4 in Finding Minimax Rules that X̄n is minimax

over P2.
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Example 1.4 (Lower Bounding the Minimax Risk of a density at a point – Le Cam’s Method). Let P(β, L)
be the collection of densities (q ≥ 0,

∫
q(x)dx = 1) that belong in a Holder class Σ(β, L) meaning the density

is (β − 1)-times differentiable with derivative q(β−1) that satisfies for all x1, x2∣∣∣q(β−1)(x1)− q(β−1)(x2)
∣∣∣ ≤ L|x1 − x2|

If our goal is to estimate the density at a point, p(x0), we can pursue Le Cam’s Method.

1. Propose two candidate distributions with large discrepancy and small KL diveregence. Let ϕ denote the
density of a standard normal RV;

p1 : x→ σ−1ϕ

(
x− x0
σ

)
p2 : x→ p1 + Lhβn

[
K

(
x− x0
hn

)
−K

(
x− 1− x0

hn

)]
Where for sufficiently small a > 0, K : x→ a exp

(
− 1

1−4x2

)
I(|x| ≤ 1/2).

2. Verify p1, p2 ∈ P.

(a) p2: Let Hβ(x) is the β-the Hermite polynomial.

dβ

dxβ
p1(x) = (−1)βHβ(x)ϕ(x)

Since lim
|x|→∞

1√
2π
Hβ(x)e

−x2/2 = 0 and the derivative is continuous,
∣∣∣ dβdxβ p1(x)

∣∣∣ is bounded uniformly

by a constant. We can make this constant ≤ L by choosing σ large enough.

(b) p2: clearly integrates to 1 because of bump term cancellations. In order for p2 to be positive, we
need to choose a∗ such that

0 < p1(x)− LhβnK

(
x− hn − x0

hn

)

=⇒ 0 < p1(x)− Lhβna exp

− 1

1− 4
(
x−hn−x0

hn

)2
 I

(∣∣∣∣x− 1− x0
hn

∣∣∣∣ ≤ 1/2

)

=⇒ 0 < p1(x)− Lhβna exp

− 1

1− 4
(
x−hn−x0

hn

)2
 I

(
x0 + 1− hn

2
≤ x ≤ x0 + 1 +

hn
2

)

=⇒ a∗ < inf
x∈I(...)

p1(x)

Lhβn exp

(
− 1

1−4( x−hn−x0
hn

)
2

)
To ensure p2 is in the Holder class, it is sufficient to show that q is β-times differentiable with
bounded derivatives. We note that the Bump functions K and its β derivatives are continuous
functions defined on a compact interval, therefore they obtain their maxima and minima. This
means that the β-th derivative is upper bounded by a constant, and we can force this constant to
be less than L by choosing σ, a > 0 small enough.
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3. Study KL divergence, using the Taylor expansion log(1 + x) = x− x2

2 + x3

3 + . . .

−KL(P1, P2) =

∫
log

(
p2
p1

)
p1dν

=

∫
log

(
p1 + bump

p1

)
p1dν

=

∫  ∞∑
i=1

(−1)i+1

(
bump
p1

)i
i

 p1dν

1st order term =

∫
bump dν = 0

2nd order term =
1

2

∫
bump2

p1(x)
dν

=
1

2

∫
L2h2βp1(x)

−1

[
K

(
x− x0
hn

)
−K

(
x− 1− x0

hn

)]2
dν

hnsmall
= c1h

2β
n

∫
p−1(x)

[
K

(
x− x0
hn

)2

−K

(
x− 1− x0

hn

)2
]

(hn small bumps don’t overlap)

= c1h
2β+1
n

∫
p−1(hnU + x0)

[
K (U)

2 −K

(
U − 1

hn

)2
]
dU

= c2h
2β+1
n

3rd order term = o(h3β)

Now the KL-divergence under n-iid draws yields

−KL(Pn1 , P
n
2 ) ≥ cnh2β+1

n

To get a stable lower bound on the KLD, we require hn = O(n−
1

2β+1 ).

4. Study Discrepancy:

d(P1, P2) =
1

2
(p1(x0)− p2(x0))

2

=
1

2

(
p1(x0)− p1(x0)− Lhβn

[
K(0)−K

(
− 1

hn

)])2

= Ch2βn

We have all the pieces we need now. Applying Le Cam’s method, we obtain

inf
T∈T

sup
P∈P

R(T, P ) ≥ 1

4
d(P1, P2) exp(−KL(P1, P2)) ≥ c · h2βn

In order for the KL divergence to have a stable lower bound, we required hn = O(n−
1

2β+1 ).

inf
T∈T

sup
P∈P

R(T, P ) ≤ c∗n−
2β

2β+1

Thus a lower bound on the minimax rate is O(n−
2β

2β+1 ) which is a slightly slower than parametric rate.
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Example 1.5 (Lower bounding minimax risk of smooth regression function – Fano’s Method). Suppose we

observe (X1, Y1), . . . , (Xn, Yn)
iid∼ Q ∈ Q, where X ∼ U [0, 1] and Y |X = x ∼ N(fQ(x), 1) where fQ(x) ∈

F(β, L) a Holder class. Suppose our objective is to estimate fQ(x), with performance quantified by the mean
integrated squared error:

L(a,Qn) =

∫ 1

0

[a(x)− fQ(x)]
2dx

We take the following few steps

1. Define candidate function class. Let F1 denote a convex combination of orthonormal basis functions
where the elements of the basis are scaled bump functions:

F1 :=

x→
m∑
j=1

wjϕj(x) : w ∈ {0, 1}m, ϕj(x) = LhβK

(
x− j

m+1

h

)
,m ∈

[
8,

1

h− 1

]
Where for sufficiently small a,

K : x→ a exp

(
− 1

1− 4x2

)
I(|x| < 1/2)

So F1 is a collection of functions that are sums of m bump functions centered at j
m+1 for j = 1, . . . ,m,

that are multiplied by 0 or 1, and that do not overlap since m ≤ 1
h = 1 =⇒ h ≤ 1

m+1 .
Recall that Ω := {0, 1}m indexes the collection of functions in F1. Thus, |F1| = |Ω| = 2m.

2. Study the discrepancy:

d(Pw, Pν) =
1

2

∫
[fw(x)− fν(x)]

2dx

=
1

2

m∑
j=1

[wj − νj ]
2

∫
ϕj(x)

2dx (Bases orthogonal so cross terms cancel)

=
1

2

m∑
j=1

[wj − νj ]
2L2h2β+1

∫
K(u)2du︸ ︷︷ ︸
c2

(U-sub)

=
1

2
c2L

2h2β+1
m∑
j=1

[wj − νj ]
2

︸ ︷︷ ︸
Hamming dist

= c3h
2β+1H(w, ν)

(
c3 :=

c2L
2

2

)
The minimal Hamming distance for two functions in that differ is exactly 1, yielding;

min
j ̸=k

d(Pj , Pk) = c3h
2β+1

3. Study the KL divergence. Turns out KL divergence takes the form:

KL(Pw, Pν) =
n

2

∫ 1

0

[fw(x)− fν(x)]
2dx

= c3nh
2β+1H(w, ν) (By same logic)

≤ c3nh
2β+1m (since H(w, ν) ≤ m)

8
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4. Plug into Fano’s Bound: recall that Ω := {0, 1}m indexes the collection of functions in F1.

inf
T∈T

sup
P∈P

R(T, P ) ≥
min
j ̸=k

d(Pj , Pk)

2

1− log 2 + max
j ̸=k

KL(Pj , P̄ )

log(|Ω|)


≥ c3h

2β+1

2

(
1− log 2 + c3nh

2β+1m

log |Ω|

)
=
c3h

2β+1

2

(
1− log 2 + c3nh

2β+1m

m log 2

)
For this bound to be informative, h = O(n−1/(2β+1)). But this produces a lower bound on the minimax
risk of O(n−1), meaning the problem is as least as difficult as a parametric problem. This suggests that
the bound may not be tight.

5. Tighten the bound using the Varshamov-Gilbert Lemma. For m ≥ 8, there exista an Ω ⊂ Ω s.t.
|Ω| ≥ 2m/8 and min

w ̸=v
H(w, v) ≥ m

8 . If we choose this subset

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1m

16

(
1− log 2 + c3nh

2β+1m
m
8 log 2

)
=
c3h

2β+1m

16

(
1− 8

m
− 8c3nh

2β+1

log 2

)
Goal is to choose m as large as possible to provide the tightest bound. If we choose m = ⌊ 1

h − 1⌋. We
know that 1

2h < m < 1
h . Plugging in the lower bound, we have

inf
T∈T

sup
P∈P

R(T, P ) ≥ c3h
2β+1m

16

(
1− 8

m
− 8c3nh

2β+1

log 2

)
≥ c3h

2β

32

(
1− 16h− 8c3nh

2β+1

log 2

)
To ensure that the negative term above is bounded, we require n = h2β+1 =⇒ h = O(n−1/(2β+1)).

Since the bandwidth is h = O(n−1/(2β+1)), the lower bound on the minimax risk is O(n−2β/(2β+1)).
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1.1.3 Admissible Rules

Example 1.6 (Posterior Mean is Admissible in Normal Model). Let X1, . . . , Xn
iid∼ N(θ, σ2) and θ ∼

N(µ, τ2). We will show that the following estimator is admissible

TΠ : (X1, . . . , Xn) →
(
1− 1/τ2

1/τ2 + n/σ2

)
X̄n +

(
1/τ2

1/τ2 + n/σ2

)
µ

By Strategy 1 in finding admissible estimators, we are using squared error loss and the Bayes risk is finite
because all the random quantities are finite. Also, the normal distribution is absolutely continuous wrt the

Lesbegue measure and vice versa. Therefore, TΠ is unique Bayes and therefore admissible for
(

1/τ2

1/τ2+n/σ2

)
∈

(0, 1).

When
(

1/τ2

1/τ2+n/σ2

)
= 0, T : x→ µ is admissible because it is a constant estimator that achieves risk 0 when

θ = µ. When
(

1/τ2

1/τ2+n/σ2

)
= 1, turns out the sample mean is admissible, but this requires further proof.

10
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Example 1.7 (Sample mean is Admissible in Normal Model). Let X1, . . . , Xn
iid∼ N(θ, σ2) with σ2 known.

We claim that X̄n is admissible in the model.
We will show by demonstrating either

(a) R(T, θ) ≥ R(X̄n, θ) ∀θ ∈ R

(b) There exists some θ for which R(T, θ) > R(X̄n, θ)

Consider WLOG σ2 = 1. Suppose (a) does not hold. We will show that (b) holds. If (a) does not hold, there
exists a θ1 s.t. R(T, θ1) < R(X̄n, θ1). By continuity of R, there exists ϵ, δ > 0 s.t. for all θ ∈ (θ1 − δ, θ1 + δ),

R(T, θ) < R(X̄n, θ)− ϵ =
1

n
− ϵ

Specifying the prior Π = N(0, τ2) and the Bayes rule TΠ as the posterior mean, we obtain

r(TΠ,Π)−R(X̄n, θ) =

∫
R

(
n

1/τ2 + n
X̄n, θ

)
dΠ(θ)− 1

n

=

∫ (
n

1/τ2 + n
X̄n − θ

)2

· 1√
2πτ2

exp

(
− 1

2τ2
θ2
)
dθ − 1

n

=
τ2

1 + nτ2
− 1

n
= − 1

n(1 + nτ2)

By optimality of the Bayes rule

r(TΠ,Π)−R(X̄n, θ) ≤ r(T1,Π)−R(X̄n, θ)

=⇒ τ2

1 + nτ2
− 1

n
= − 1

n(1 + nτ2)
≤
∫ [

R(T1, θ)−
1

n

]+
Π(dθ)−

∫ [
R(T1, θ)−

1

n

]−
Π(dθ)

Recall that for θ ∈ (θ1−δ, θ1+δ) and R(T1, θ) < 1
n −ϵ implying [R(T1, θ)−1/n]− > ϵ. Then simple bounding

yields ∫ [
R(T1, θ)−

1

n

]−
Π(dθ) ≤

∫ θ1+δ

θ1−δ

[
R(T1, θ)−

1

n

]−
Π(dθ)

≤ ϵ

∫ θ1+δ

θ1−δ
dΠ(θ)

= ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

Implying ∫ [
R(T1, θ)−

1

n

]+
dΠ(θ) ≥ − 1

n(1 + nτ2)
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

Noting that

√
2πτ

(
− 1

n(1 + nτ2)
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

)
τ→∞−→ 2ϵδ

Thus, choosing τ0 s.t.
√
2πτ0

(
− 1
n(1+nτ2

0 )
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

)
> ϵδ we obtain

∫ [
R(T1, θ)−

1

n

]+
dΠ(θ) ≤

(
− 1

n(1 + nτ20 )
+ ϵΠ(θ1 − δ ≤ θ ≤ θ1 + δ)

)
>

ϵδ√
2πτ0

> 0

Thus, ther exists θ for which R(T, θ) > R(X̄n, θ) implying condition (b) holds. Thus, the sample mean is
admissible.

11
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Example 1.8 (Sample mean is inadmissible in d ≥ 3). Suppose X1, . . . , Xn ∼ N(θ, Id) for d ≥ 3. Let T JS

be the James-Stein estimator:

T JS : x→

{(
1− (d−2)

n||x̄n||2

)
x̄n if x̄n ̸= (0, . . . , 0)

0 if x̄n = (0, . . . , 0)

Under MSE loss, letting T denote the sample mean

R(T JS , θ) = E[||T JS(||X||)X − θ||2] (T is spherically symmetric est)

= E
[
||[T JS(||X||)− 1]X + [X − θ]||2

]
= E

[
||[T JS(||X||)− 1]X||2

]
+ E[||X − θ||2]− 2E

[
⟨[1− T JS(||X||)]X, X − θ⟩

]
= E

[
(d− 2)2

||X||2

]
+R(T, θ)− 2(d− 2)E

[〈
X

||X||2
, X − θ

〉]
To show the third term in the above display is −2E

[
||[T JS(||X||)− 1]X||2

]
, we appeal to Stein’s Lemma.

Stein’s Lemma: Letting Y ∼ N(µ, σ2Id) and g1, . . . , gd be functions from Rd → R s.t. for all j = 1, . . . , d,

E
∣∣∣ ∂∂yj gj(y)|y=Y ∣∣∣ <∞. Letting g : y → (g1(y), . . . , gd(y)), we have

E[⟨g(Y ), Y − µ⟩] = σ2E

 d∑
j=1

∂

∂yj
gj(y)


Define gj : z → zj

||z||2 . Then we see that

E
[〈

X

||X||2
, X − θ

〉]
= E [⟨g(X), X − θ⟩]

= E

 d∑
j=1

∂

∂yj
gj(y)

 (Stein’s Lemma)

= E

 d∑
j=1

1

||X||2
− 2Xj

||X||4

 (Quotient Rule)

= E
[

d

||X||2
− 2||X||2

||X||4

]
= E

[
d− 2

||X||2

]
Therefore,

R(T JS , θ) = E
[
(d− 2)2

||X||2

]
+R(T, θ)− 2(d− 2)E

[〈
X

||X||2
, X − θ

〉]
= E

[
(d− 2)2

||X||2

]
+R(T, θ)− 2E

[
(d− 2)2

||X||2

]
= R(T, θ)− E

[
(d− 2)2

||X||2

]
Therefore, R(T JS , θ) < R(T, θ) for all θ.

12
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1.2 Hypothesis Testing

Example 1.9 (Power under local alternatives for location family). Suppose Xn
1 ∼ Pθ for location family

where (i) Pθ has density f(x−θ), (ii) f is symmetric about 0, (iii) f is positive and continuously differentiable
with finite second moment.
Suppose we wish to test H0 : θ = 0 and H1 : θ > 0 with the following sign and t-statistics:

1. Sign: Sn = 1
n

∑
I(Xi > 0)

2. t-statistic: Tn = 1
n

∑ Xi

σ̂n
where σ̂n is the empirical standard deviation.

The estimators are both asymptotically linear:

√
n

(
Sn − 1

2

)
=

1√
n

n∑
i=1

(
I(Xi > 0)− 1

2

)
⇝ N(0, 1/4)

√
nTn =

1√
n

n∑
i=1

Xi

σ
+ op(1)

Let’s show that both estimators are regular. For the sign statistic, µ(θ) := Pθ(X > 0)

µ̇(0) =
∂

∂θ
Pθ(X > 0)

∣∣∣
θ=0

=
∂

∂θ

∫ ∞

0

f(x− θ)dx
∣∣∣
θ=0

=

∫ ∞

0

∂

∂θ
f(x− θ)

∣∣∣
θ=0

dx

= −
∫ ∞

0

ḟ(x)dx =

∫ [
− ḟ(x)
f(x)

]
I(x > 0)dP0(x)

=

∫
ℓ̇0(x)I(x > 0)dP0(x)

= P0(ℓ̇0s0)

Recall regularity is equivalent to P0(gθ ℓ̇θ) = µ̇(θ). Note that θ = 0 under H0 implies Sn is regular. Now for
the t-statistic, let µ(θ) := θ/σ. We have∫

ℓ̇0t0(x)dP0(x) =

∫
ℓ̇0(x)

x

σ
dP0(x)

= −σ−1

∫
ḟ(x)

f(x)
xdP0(x)

= −σ−1

∫
ḟ(x) · xdx

= σ−1

∫ (
f(x)− d

dx
[xf(x)]

)
dx (Product rule and add subtract)

= σ−1 − lim
a→∞

∫ a

−a

(
d

dx
[xf(x)]

)
dx (Pdf integrates to 1)

= σ−1 − lim
a→∞

a[f(a)− f(−a)]

= σ−1 = µ̇(0)

Thus, Tn is also regular.
Knowing Sn and Tn are regular ALEs, we know that their corresponding tests

I(
√
n(2Sn − 1) > z1−α)

I(
√
nTn > z1−α)

13
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have power functions under local alternatives take the form for all h:

πn

(
h√
n

)
n→∞
⇝ 1− Φ

(
z1−α − hT

µ̇(0)

σ(0)

)
=⇒ Pθ+h/

√
n(
√
n(2Sn − 1) > z1−α) = 1− Φ (z1−α − 2hf(0))

=⇒ Pθ+h/
√
n(
√
n(Tn) > z1−α) = 1− Φ

(
z1−α − hσ−1

)
Thus, we can compare the relative power of the sign test to the t-test under local alternatives by the ratio of
their two slopes:

1. If 2f(0)σ > 1, the sign test has greater local power.

2. If 2f(0)σ < 1, the t test has greater local power.

This indicates when f(0) is very large relative to the variance σ, the sign test is more powerful under local
alternatives asymptotically. For instance, if we consider f to be a density that for small ϵ > 0, places mass
(1− ϵ) on Unif(−1, 1) and ϵ mass at N(0, ϵ4), then the sign test will have much greater power.

14
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1.3 Empirical Process Theory

1.3.1 Concentration Inequalities

Example 1.10 (Bivariate U statistic (McDiarmind’s Inequality)). A good use case of McDiarmind’s in-
equality is in the study of the concentration of U -statistics, where g : R2 → R and

U :=

(
n

2

)−1∑
j≤k

g(Xj , Xk)

If g is bounded, say ||g||∞ ≤ b, then McDiarmind’s inequality yields for a given coordinate k:

|f(x)− f(x\k)| ≤
(
n

2

)−1∑
j ̸=k

|g(xj , xk)− g(xj , x
′
k)|

≤ (n− 1)(2b)(2)

(n)(n− 1)
=

4b

n

So the bounded differences property holds with parameter ci = 4b
n in each coordinate. By McDiarmind’s

Inequality

P (|U − E(U)| ≥ t) ≤ 2 exp

(
−nt

2

8b2

)

15
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Example 1.11 (Gaussian Order Statistics (Lipschitz Transformation of Gaussian)). Let X(k) denote the
k-th order statistic of a Gaussian random vector. Let Y(k) denote the k-th order statistic from an iid ghost
sample from the same Gaussian distribution. Turns out

|X(k) − Y(k)| ≤ ||X − Y ||2

so each order statistic is 1-Lipschitz. Based on the concentration result for lipschitz transformations of
Gaussian random vectors

P [|X(k) − E[X(k)]| ≥ δ] ≤ 2 exp

(
−δ

2

2

)

16
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1.3.2 Establish Uniform LLN and Upper Bounding Empirical Process Terms

Example 1.12 (Establish Uniform LLN in Lipschitz Function Class – Dudley). If F denotes a class of
[0, 1] → R-valued Lipschitz functions s.t., |f(x)− f(y)| ≤ L|x− y|.
Let’s first derive the metric entropy (log covering number) of the function class F . Create M = ⌊ 1

ϵ ⌋ grid
points xi = (i− 1)ϵ for i = 1, . . . ,M on [0, 1]. Defining ϕ as

ϕ(u) :=


0 if u < 0

u if 0 ≤ u ≤ 1

1 else

For any binary sequence β = {−1,+1}M , define a function fβ such that

fβ(y) =

M∑
i=1

βiLϵϕ

(
y − xi
ϵ

)
consider the interval from y ∈ (0, x1). ϕ increases linearly in y− xi the interval with slope ±L. Thus, fβ(y)
is piecewise linear with slope ±L over each pair of gridpoints. For any two functions fβ , fβ′ , there is at
least one interval where the two functions start at the same point and have opposite slopes, implying that
||fβ − fβ′ ||∞ ≥ 2Lϵ. Thus, {fβ , β ∈ {−1,+1}M} forms a 2Lϵ-packing in the supnorm. By relationships
between covering and packing numbers

2M = |fβ | ≤M(2Lϵ,F , || · ||∞) ≤ N(Lϵ,F , || · ||∞)

Defining δ = ϵL, and recalling that M = ⌊ 1
ϵ ⌋, we have

C · L
δ
≤ logN(δ,F , || · ||∞)

Also by plotting {fβ , β ∈ {−1,+1}M}, one can see that the farthest an element of F can be from a given
fβ pointwise is Lϵ. Thus, {fβ , β ∈ {−1,+1}M} is a δ-cover for F . The covering number (size of smallest
cover), then:

N(δ,F , || · ||∞) ≤ |fβ | = C∗ · L
δ

Therefore, going back to ϵ > 0 notation

sup
Q

log(N(ϵ,F , L2(Q))) = log(N(ϵ,F , || · ||∞) = O
(
L

ϵ

)
Recognizing that D = 2L <∞, Dudley’s entropy integral gives:

E||Rn||F ≤ 8√
n
sup
Q

[∫ ∞

0

√
logN(ϵ,F , L2(Pn))dϵ

]
≡ 8√

n

[∫ D

0

O
(
L

ϵ

)
dϵ

]
= O(n−1/2)

Therefore, the entropy integral is satisfied, and the empirical process term is controlled. Also, F is Donsker
since is satisfies the entropy integral.
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Example 1.13 (Establish Uniform LLN in Class of Functions Lipschitz in Indexing Parameters – Dudley).
Let F := {gβ : β ∈ Rp; ||β||2 ≤ 1} be a collection of functions indexed by parameter β where |gβ1(x)−gβ2(x)| ≤
L||β1 − β2||.
Step 1: Note that the indexing parameter set B = {β ∈ Rp : ||β||2 = 1} is a sphere of radius 1. We previously
proved that the ϵ-covering number of a ball of radius r has the upper bound

N(ϵ, B(0, r), || · ||Lp(P )) ≤
(
2r

ϵ
+ 1

)p
Step 2: we also know that functions Lipschitz in their indexing parameters also satisfy the following covering
number bound on their function space F

N(ϵ,F , || · ||F ) ≤ N(ϵ/L,B, || · ||B)

Step 3: bringing these two together

N(ϵ,F , || · ||F ) ≤ N(ϵ/L,B(0, 1), || · ||2) ≤
(
2 · 1
ϵ/L

+ 1

)p
=⇒ logN(ϵ,F , || · ||F ) ≤ p log

(
2L

ϵ
+ 1

)
≈ p log

(
L

ϵ

)
And the Dudley integral is:

8√
n

[∫ ∞

0

√
logN(ϵ,F , L2(Pn))dϵ

]
≤ 8√

n

∫ 2L

0

√
p log

(
L

ϵ

)
dϵ

⪅
8√
n
L
√
p

∫ 1

0

log(1/δ)dδ

⪅
8√
n
L
√
p

=⇒ E||Pn − P ||F ⪅ E||Rn||F = O
(
L
√
p

√
n

)
Thus, a function that is Lipschitz in its 1-dimensional indexing parameter controls the empirical process
term at a O(n−1/2) rate! However, as the dimension of the indexing parameter increases, we get slower
convergence.
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Example 1.14 (Establish Uniform LLN in Sobolev Class). Let F be a collection of functions f : [0, 1] → R
such that

1. Uniformly bounded: ||f ||∞ ≤ 1

2. Absolutely continuity of (k − 1)-th derivative

3.
∫
f (k)(x)2dx ≤ 1 for some k ∈ N

There exists a constant C such that the log bracketing number wrt the supnorm metric takes form for all
ϵ ∈ [0, 1]:

logN[](ϵ,F , || · ||∞) ≤ C

(
1

ϵ

)1/k

Suppose k ≥ 1, then by the bracketing integral bound is finite;

E||Pn − P ||F ≤ C√
n

∫ 1

0

√
logN[](ϵ,F , || · ||∞)dϵ

≤ C∗
√
n

∫ 1

0

√
ϵ−1/kdϵ

= O(n−1/2)

Thus, we can control the empirical process term at O(n−1/2) rates. Also since the function class satisfies the
uniform entropy integral, it is Donsker.
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1.4 M/Z Estimation

Example 1.15 (Limiting distributions and Regularity of Mean and Median (581 HW 8 P3)). Let µn and
mn be the sample mean and median respectively. Find the limit distributions of each under Pθ0 and Pθ0+h/

√
n

given Pθ′ ≡ N(θ′, 1).

We start with the sample mean, µn. By WLLN, the sample mean is consistent and by the central limit
theorem,

√
n(µn − θ0)

Pθ0⇝ N(0, 1)

Recalling that the normal distribution is QMD and both distributions are mutually contiguous, local asymp-
totic normality holds, the log likelihood ratio affords a taylor expansion, and is asymptotically normal. The
joint distribution between the sample mean and log likelihood ratio is normal with covariance h. Le Cam’s
third lemma says that the distribution of the MLE under sampling from the local alternative is

√
n(µn − θ0)

Pθ0+h/
√

n
// N(h, 1) =⇒

√
n

(
µn −

(
θ0 +

h√
n

))
Pθ0+h/

√
n
// N(0, 1)

Thus, the MLE is invariance to local perturbations in the parameter, implying that it is a regular estimator.

We now turn our attention to the sample median. The sample median can be defined as a z-estimator
that solves the estimating equation Pnzθ = 0 where zθ(x) = I(x ≤ θ)− 1

2 .
We start by proving consistency. This is a 1-dimensional Z-estimator, where the estimating function is

decreasing in the parameter θ and has exactly one root. The sample estimating equation converges point wise
to the population estimating equation by WLLN. We also know that for the population median equal to θ0
and small ϵ > 0,

P0(I(x ≤ θ0 + ϵ)− 0.5) < 0 < P0(I(x ≤ θ0 − ϵ)− 0.5)

Thus, mn
p→ θ0.

Now we characterize the asymptotic distribution of the sample median under Pθ0 . Checking the conditions
for asymptotic normality, we know that

1. The estimating function zθ is squared differentiable because it is bounded.

2. Pzθ is differentiable at θ0:

∂

∂θ
Pzθ

∣∣∣
θ=θ0

=
∂

∂θ
P

(
I(x ≤ θ)− 1

2

) ∣∣∣
θ=θ0

=
∂

∂θ
Fx(θ)−

1

2

∣∣∣
θ=θ0

= fx(θ0)

Recalling the form of the normal density, fx(θ0) =
1√
2π

.

3. {zθ(x) : θ ∈ R} forms a Donsker class because it is a shifted indicator function, and indicator functions
are VC class.

Under these conditions

√
n(mn − θ0) = −V −1

θ0

1√
n

n∑
i=1

zθ0(Xi) + oP (1)
Pθ0 // N

(
0, V −1

θ0
P0[zθ0z

T
θ0 ](V

−1
θ0

)T
)

≡ N

0,
E((I(X ≤ θ0)− 0.5)2(

1√
2π

)2
 ≡ N(0, π/2)
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Lastly, we investigate the distribution of mn under the local alternative. This relies on the applying
Le Cam’s third lemma for asymptotic linear estimators. For an asymptotic linear estimator with influence
function ϕθ, the asymptotic distribution under the local alternative is

√
n(mn − θ0)

Pθ0+h/
√

n
// N(P0(ϕθ0 · ℓ̇)h, P0ϕ

2
θ0)

Thus, we must evaluate the P0(ϕθ0 · ℓ̇) to learn the limiting distribution.

1. Recall the influence function ofmn is given by ϕ0(x) =
I(x≤θ0)− 1

2

f(θ0)
=

√
2π
(
I(x ≤ θ0)− 1

2

)
=

√
2π
(
1
2 − I(x ≥ θ0)

)
.

2. Recall the score is given by ℓ̇(x) = ∂
∂θ −

1
2

∑n
i=1(Xi − θ0)

2 =
∑n
i=1(Xi − θ0).

Writing the inner product of these quantities we obtain by using the mean of a positive-restricted normal.

P0(ϕθ0 · ℓ̇) =
∫ √

2π

(
1

2
− I(x ≤ θ0)

)
(x− θ0)dP0(x)

=

∫ √
2π

(
I(x ≥ θ0)−

1

2

)
(x− θ0)dP0(x)

=
√
2π

∫ ∞

0

(x− θ0)dP0(x) =
√
2π

1√
2π

= 1

Therefore, the sample median mn is also a regular estimator

√
n(mn − θ0)

Pθ0+h/
√

n
// N(h, π/2) =⇒

√
n

(
mn −

(
θ0 +

h√
n

))
Pθ0+h/

√
n
// N(0, π/2)
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1.5 Calculating Influence Functions

Each of these examples are taken from Chapter 20 in van der Vaart.

Example 1.16 (Mean functional). Suppose the sample mean ψ(Pn) is the plug-in estimator of the mean
functional ψ(P ) =

∫
xdP (x). By the von-Mises expansion, the influence function is

ψ′
P (δx − P ) =

d

dϵ

∫
x d[(1− ϵ)P + ϵδx](x)

∣∣∣
ϵ=0

= x−
∫
xdP (x)

Example 1.17 (Wilcoxon Mann-Whitney Statistic). Suppose (X1, Y1), . . . , (Xn, Yn) are random sample
from a bivariate distribution with empirical distributions Fn and Gn for each margin. The Mann-Whitney
Statistic is a plug-in estimator of the functional ψ0 = ψ(P,G) =

∫
FdG:

ψ(Pn, Gn) =

∫
FndGn =

1

n2

n∑
i=1

n∑
j=1

I(Xi ≤ Yj)

The influence function of the Mann-Whitney statistic can also be calculated from the von-Mises expansion

ψ′
P (δx − F, δy −G) =

d

dϵ

∫
((1− ϵ)F + ϵδx)d [(1− ϵ)G+ ϵδy]

∣∣∣
ϵ=0

=
d

dϵ

∫
(1− ϵ)2FdG+

∫
(1− ϵ)ϵFdδy +

∫
ϵ(1− ϵ)δxdG+

∫
ϵ2δxdδy

∣∣∣
ϵ=0

= F (y) + 1−G−(x)− 2

∫
FdG

Example 1.18 (Z estimators). The Z-estimator ψ(P0) is the solution to the population-based estimating
equation P0zψ(P0) = 0. Differentiating with respect to ϵ across the identity

0 = (P + ϵδx)zψ(P+ϵδx) = Pzψ(P+ϵδx) + ϵzψ(P+ϵδx)(x)

Assumin the derivatives exist and zψ is continuous, we have that

0 =

(
∂

∂θ
Pzθ

)
θ=ψ(P )

[
d

dt
ψ(P + tδx)

]
t=0

+ zψ(P )(x)

Where the expression in parentheses is the influence function and is given by

−
(
∂

∂θ
Pzθ

)−1

θ=ψ(P )

zψ(P )(x)

Example 1.19 (Quantiles). The p-th quantile of distribution function F is ψ(F ) = F−1(p). We set Fϵ =
(1− ϵ)F + ϵδx and differentiate wrt ϵ the identity

p = FϵF
−1
ϵ (p) = (1− t)F (F−1

ϵ (p)) + ϵδx(F
−1
t (p))

We find that

0 = −F (F−1(p)) + f(F−1(p))

[
d

dϵ
F−1
ϵ (p)

]
t=0

+ δx(F
−1(p))

Where the influence function is given by[
d

dϵ
F−1
ϵ (p)

]
t=0

= ψ′
F (δx − F ) = − I(x ≤ F−1(p))− p

f(F−1(p))

This implies that the sequence of empirical quantiles is asymptotically normal

√
n(F−1

n (t)− F−1(t))⇝ N

(
0, P0

[
− I(x ≤ F−1(p))− p

f(F−1(p))

]2)
≡ N

(
0,

p(1− p)

f(F−1(p))2

)
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Example 1.20 (Cramer-von Mises statistic: higher order expansion). The Cramer-von Mises statistic ψ(Fn)
estimates the following parameter ψ(F ) =

∫
(F −F0)

2dF0 for some fixed F0. The von-Mises expansion yields

ψ(F + ϵH) =

∫
(F + ϵH − F0)

2dF0 =

∫
(F − F0)

2dF0 + 2ϵ

∫
(F − F0)HdF0 + ϵ2

∫
H2dF0

The first derivative of the above form takes the form from F along path H is given by:

∂

∂ϵ
ψ(F + ϵH) = 2

∫
(F − F0)HdF0

Plugging in ϵ = 1/
√
n and H = Gn =

√
n(F − F0), we have

ψ′(F ) ≡ ψ′(F0 + ϵH) ≡ 2

∫
(F0 − F0)HdF0 = 0

Therefore, first order expansion is degenerate. To determine the asymptotic distribution, we must go to the
second order derivative

ψ′′
F0
(H) =

∂2

∂ϵ2
ψ(F + ϵH)

∣∣∣
ϵ=0

= 2

∫
H2dF0

Which for ϵ = 1/
√
n and H = Gn =

√
n(F − F0) produces

ψ′′
F0
(Gn) = 2

∫
G2
ndF0

The von Mises expansion suggests the following approximation

ψ(Fn)− ψ(F ) =
���

���*0
1√
n
ψ′
F0
(Gn) +

1

2!

1

n2/2
ψ′′
F0
(Gn) + . . .

≈ 1

n

∫
G2
ndF0
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1.6 Semiparametric/Nonparametric Inference

1.6.1 Function-valued parameters

Example 1.21 (Uniform confidence bands for CDF). Suppose our goal is to construct confidence bands for
the CDF F0(t) uniformly over all t ∈ R. We estimate F0(t) with the class of functions F := {x→ I(x ≤ t) :
t ∈ R}. By Donsker’s Theorem and the continuous mapping theorem,

Gn ⇝ G in ℓ∞(F)

||Gn||F ⇝ ||G||F

Our goal of constructing valid confidence bands is equivalent to finding {Ln(t), Un(t)} such that

lim
n→∞

P (Ln(t) ≤ F0(t) ≤ Un(t)) ≥ 1− α ∀ t ∈ R

We propose the following bounds where c is the (1− α)-quantile of ||G||F

Ln(t) := Fn(t)−
c√
n

Un(t) := Fn(t)−
c√
n

These bounds are asymptotically valid because

lim
n→∞

P0(Ln(t) ≤ F0(t) ≤ Un(t)) ∀t ∈ R

= lim
n→∞

P0

(
Fn(t)−

c√
n
≤ F0(t) ≤ Fn(t)−

c√
n

)
∀t ∈ R

= lim
n→∞

P0

(
−c ≤

√
n(F0(t)− Fn(t)) ≤ c

)
∀t ∈ R

= lim
n→∞

P0

(√
n|Fn(t)− F0(t)| ≤ c

)
∀t ∈ R

= lim
n→∞

P0

(
sup
t

√
n|Fn(t)− F0(t)| ≤ c

)
= lim
n→∞

P0

(
sup
f∈F

√
n|(Pn − P0)h| ≤ c

)
= lim
n→∞

P0 (||Gn||F ≤ c)

= P0 (||G||F ≤ c)

= (1− α)
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1.6.2 Establishing Asymptotic Linearity

Example 1.22 (Coefficient of Variation is ALE). Let Cn := σn

µn
be the plug-in estimator for C0 := σ0

µ0
. Let

h(u, v) = u1/2v−1 and let C0 := h(σ2
0 , µ0), Cn := h(σ2

n, µn). We know that:(
σ2
n

µn

)
−
(
σ2
0

µ0

)
=

1

n

n∑
i=1

(
(Xi − µ0)

2 − σ2
0

(Xi − µ0)

)
+ oP (n

−1/2)

By the Delta Method for ALEs/Influence Functions, we have

Cn − C0 = h(σ2
n, µn)− h(σ2

0 , µ0) =
1

n

n∑
i=1

〈
∇h(σ2

0 , µ0)
T ,

(
(Xi − µ0)

2 − σ2
0

(Xi − µ0)

)〉
+ oP (n

−1/2)

=
1

n

n∑
i=1

〈(
1

2σ0µ0
,−σ0

µ2
0

)T (
(Xi − µ0)

2 − σ2
0

(Xi − µ0)

)〉
+ oP (n

−1/2)

=
1

n

n∑
i=1

(Xi − µ0)
2 − σ2

0

2µ0σ0
− σ0(Xi − µ0)

µ2
0

+ oP (n
−1/2)

=
1

n

n∑
i=1

µ0(Xi − µ0)
2 − µ0σ

2
0 − 2σ2

0(Xi − µ0)

2µ2
0σ0

+ oP (n
−1/2)

=
1

n

n∑
i=1

C0

[
µ2
0(Xi − µ0)

2 − µ2
0σ

2
0 − 2µ0σ

2
0(Xi − µ0)

2µ2
0σ

2
0

]
+ oP (n

−1/2)

=
1

n

n∑
i=1

C0

[
1

2

(
Xi − µ0

σ0

)2

− Xi

µ0
+

1

2

]
+ oP (n

−1/2)

So Cn is asymptotically linear with influence function ϕP0
(x) := C0

[
1
2

(
x−µ0

σ0

)2
− x

µ0
+ 1

2

]
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Example 1.23 (Average Absolute Deviation from Mean is ALE). Suppose we wish to infer about ψ0 :=∫
P0|x− µ0| for µ0 =

∫
xdP0(x). Consider the plug-in estimator:

ψn :=
1

n

n∑
i=1

|Xi − X̄n|

Noting that ψn = Pnfn and ψ0 = P0f0 for fn(x) = |x − X̄n| and f0(x) = |x − µ0|, we write the following
expansion

ψn − ψ0 = (Pn − P0)f0 + P0(fn − f0) + (Pn − P0)(fn − f0)

Where term 1 is linear. The other two terms require further inspection. Let’s study term 2. Letting h(u) :
u→

∫
|x− u|dP0(x), we have that

P0(fn − f0) = h(X̄n)− h(µ0) = h′(µ0)(X̄n − µ0) + oP (n
−1/2) =

1

n

n∑
i=1

h′(µ0)(Xi − µ0) + oP (n
−1/2)

By the delta method. Let F0(u) :=
∫
I(x < u)dP0(x) and G0(u) =

∫
I(x < u)xdP0(x). Then h(u) is given by

h(u) =

∫
|x− u|dP0(x) =

∫
(u− x)I(x < u)dP0(x) +

∫
(x− u)I(x > u)dP0(x)

=

∫
(u− x)I(x < u)dP0(x) +

∫
(x− u)(−I(x < u) + 1)dP0(x)

= uF0(u)−G0(u) +

∫
(u− x)I(x < u)dP0(x) +

∫
(x− u)dP0(x)

= 2uF0(u)− 2G0(u)− u+ µ0

= u[2F0(u)− 1] + [µ0 − 2G0(u)]

Therefore

h′(u) = 2F0(u)− 1 =⇒ h′(µ0) = 2F0(µ0)− 1

Now we study term 3. Note that |(fn − f0)| = ||x − X̄n| − |x − µ0|| ≤ |µ0 − X̄n|. Therefore, the total
variational norm of (fn − f0) ≤ 2|µ0 − X̄n|. The WLLN says that there will exist a constant K < ∞ such
that |µ0 − X̄n| < K w.p. 1. Thus, the function class is bounded in total variation and is therefore Donsker.
Therefore,

(Pn − P0)(fn − f0) = oP (n
−1/2)

The result is that

ψn − ψ0 =
1

n

n∑
i=1

[|Xi − µ0| − ψ0 + [2F0(µ0)− 1](Xi − µ0)] + oP (n
−1/2)
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Example 1.24 (IPW Estimator is ALE). Suppose X = (Y,∆,W ) with Y the outcome of interest only
observed when ∆ = 1. W are covariates. Suppose we wish to infer about the mean of Y . If the missingness
mechanism only depends on W (MAR), the mean outcome is

ψ0 = E0[E0(Y |∆ = 1,W )]

Let Q̃0(w) := E0(Y |∆ = 1,W = w), g0(w) := P0(∆ = 1|W = w), QW,0(w) := P0(W ≤ w). We can now
write

ψ0 = E0[Q̃0(W )] = E0

[
E0

[
∆Y

g0(W )

∣∣Y ]]
Case 1: If g0 is known, this motivates the following plug-in estimator:

ψ0,n :=
1

n

n∑
i=1

∆iYi
g0(Wi)

= Pnf0

Which is linear with influence function ϕP0(x) : x→ δy
g0(w) − ψ0.

Case 2: If the missingness probability is unknown, but is known to lie in a parametric model {gθ : θ ∈ Θ}
with g0 = gθ0 . Suppose we have an ALE θn for θ0 with influence function φθ0 . Letting gn := gθn and
fn(x) :=

δy
gn(w) , we can consider the new plug-in estimator

ψn :=
1

n

n∑
i=1

∆iYi
gn(Wi)

= Pnfn

To show this estimator is asymptotically linear, examine the expansion

ψn − ψ0 = (Pn − P0)f0 + P0(fn − f0) + (Pn − P0)(fn − f0)

Study term 2. First note that gn(w)− g0(w) =
∂
∂θgθ(w)

∣∣∣
θ=θ0

(θn− θ) + oP (n
−1/2) by Taylor expansion. Now

Term 2 takes form

P0(fn − f0) =

∫
Q̃0(w, 1)g0(w)

[
1

gn(w)
− 1

g0(w)

]
QW,0(dw)

= −
∫
Q̃0(w, 1)

1

g0(w)
[gn(w)− g0(w)]QW,0(dw) + oP (n

−1/2)

= −
∫
Q̃0(w, 1)

1

g0(w)

[
∂

∂θ
gθ(w)

∣∣∣
θ=θ0

(θn − θ)

]
QW,0(dw) + oP (n

−1/2)

= −
∫
Q̃0(w, 1)

1

g0(w)

[
∂

∂θ
gθ(w)

∣∣∣
θ=θ0

(
1

n

n∑
i=1

φθ0(Xi)

)]
QW,0(dw) + oP (n

−1/2)

=
1

n

n∑
i=1

γ0φθ0(Xi) + oP (n
−1/2)

For γ0 = −
∫
Q̃0(w, 1)

1
g0(w)

∂
∂θgθ(w)

∣∣∣
θ=θ0

QW,0(dw).

Term 3 requires that (fn − f0) falls in a Donsker class with probability approaching 1.
Under this condition ψn is asymptotically linear with influence function

ϕ∗P0
(x) := ϕP0

(x) + γ0φθ0(Xi)

Thus if θn is an asymptotically linear (and parametric efficient) estimator of θ0, we can obtain smaller
variance than the Case 1 estimator!
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Example 1.25 (Robust Mean is ALE (P6 Theory Exam 2021)). Let X1, . . . , Xn
iidP0 ∈M where M is the

nonparametric model with finite second moment and strictly positive density on the nonnegative real numbers.
We wish to estimate ψ0 = ψ(F0)

ψ(F ) := EF [XI(X ≤ Qβ(F ))] =

∫ Qβ(F )

0

udF (u)

Where Qβ(F ) is the β-quantile of F . Let µ0 := µ(F0), µn := µ(Fn) and q0 := Qβ(F0). Also note that the

Gateaux derivative of Qβ at F in direction h is given by Q̇β(F ;h) =
−h(Qβ(F ))
f(Qβ(F )) .

1. Calculate Gauteaux derivative of ψ. Using the fundamental theorem of calculus and product rule,
the Gauteaux derivative is defined as

ψ̇(F ;h) =
d

dϵ
ψ(F + ϵh)

∣∣
ϵ=0

=
d

dϵ

[∫ Qβ(F+ϵh)

0

udF (u) + ϵ

∫ Qβ(F+ϵh)

0

udh(u)

] ∣∣∣
ϵ=0

=
d

dϵ

[∫ Qβ(F+ϵh)

0

uf(u)du+ ϵ

∫ Qβ(F+ϵh)

0

udh(u)

] ∣∣∣
ϵ=0

= Qβ(F + ϵh)f(Qβ(F + ϵh)) · Q̇β(F ;h) +
∫ Qβ(F+ϵh)

0

udh(u) + ϵ
(
Qβ(F + ϵh)Q̇β(F ;h)

) ∣∣∣
ϵ=0

= Qβ(F + ϵh) (f(Qβ(F + ϵh)))

(
−h(Qβ(F ))
f(Qβ(F ))

)
+

∫ Qβ(F+ϵh)

0

udh(u) + ϵ
(
Qβ(F + ϵh)Q̇β(F ;h)

) ∣∣∣
ϵ=0

=

∫ Qβ(F )

0

udh(u)−Qβ(F )h(Qβ(F ))

2. Asymptotic Linearity and Influence Function. By the Functional Delta method, we know that
ψn = ψ(Fn) is asymptotically linear with influence function equal to the Gauteax derivative (under
Hadamard differentiability wrt supremum norm):

ψ(Fn)− ψ(F0) =
1

n

n∑
i=1

ψ̇(F0; I(Xi ≤ ·)− F0) + oP (n
−1/2)

To calculate the influence function, we look to part (a). Recalling q0 = Qβ(F0):

ψ̇(F0; I(Xi ≤ ·)− F0) =

∫ Qβ(F0)

0

u (I(Xi ≤ ·)− F0)(du)−Qβ(F0) [I(Xi ≤ Qβ(F0))− F0(Qβ(F ))]

=

∫ q0

0

u (I(Xi ≤ ·)− F0)(du)− q0 [I(Xi ≤ q0)− β]

=

∫ q0

0

u d(I(Xi ≤ u))− ψ0 − q0I(Xi ≤ q0) + βq0

= (x− q0)I(Xi ≤ q0)− ψ0 + βq0

3. Show that
√
n(µn−µ0) where µn is the sample mean. We solve for the variance of X using the law of

total variance with A1 = I(x ≤ q0), A2 = I(x > q0) which partition the outcome space.

Var(X) =

2∑
i=1

P (Ai) ·Var(X|Ai) +

[
2∑
i=1

E[X|Ai]2[1− P (Ai)][P (Ai)]

]
− 2E[X|A1]P (A1)E[X|A2]P (A2)

= βVar(X|X ≤ q0) + (1− β)Var(X|X > q0) + β(1− β) (E[X|X ≤ q0]− E[X|X > q0])
2
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4. Compare the asymptotic variances of
√
n(ψn−ψ0) to

√
n(µn−µ0) via the asymptotic relative efficiency:

comparing the squares of each of the influence functions:

E
(
[(x− q0)I(x ≤ q0)]

2 − 2(x− q0)I(x ≤ q0)(ψ0 − βq0) + (ψ0 − βq0)
2
)

E
(
[x− µ0]

2
)

=
E
(
{xI(x ≤ q0)− ψ0 − (q0I(x ≤ q0)− βq0)}2

)
E
(
[x− µ0]

2
)

=
E
(
{xI(x ≤ q0) − ψ0}2 − 2{xI(x ≤ q0) − ψ0}{q0I(x ≤ q0)− βq0)}+ {q0I(x ≤ q0)− βq0)}2

)
E
(
[x− µ0]

2
)

=
Var(X|X ≤ q0)− 2ψ0q0 + 2ψ0βq0 + 2ψ0βq0 − 2ψ0βq0 + q20β − 2β2q20 + β2q20

Var(X)

=
Var(X|X ≤ q0)− 2ψ0q0(1− β) + q20β(1− β)

Var(X)
=

Var(X|X ≤ q0)− q0(1− β)(2ψ0 − q0β)

Var(X)

Thus, as long as (2ψ − q0β) > 0 then we are assured a reduction in variance compared to the sample
mean. This makes sense because the influence function of the trimmed mean is bounded and therefore
is robust to outliers.
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Example 1.26 (Absolute Mean Difference and Gini Index are ALE (Theory Exam 2020 P7)). Suppose

X1, . . . , Xn
iid∼ P ∈ M where M is nonparametric model on (0,∞). Let target of inference be δ0 = ∆(P0)

defined as

∆(P ) = EP |X1 −X2|

With X1, X2 independent draw from P .

(a) Show δn = ∆(Pn) is asymptotically linear, determine its influence function, and derive its large sample
distribution.

A convenient way of writing the estimand is

∆(P ) :=

∫ ∫
|X1 −X2|dP (X1)dP (X2)

A natural place to start is the following V statistic

Vn :=
1

n2

n∑
i=1

n∑
j=1

|Xi −Xj |

Which by linearization argument has an asymptotic distribution that is dominated by

2(Pn − P0)

∫
|X − u|dP0(x)

=⇒ Vn − δ0 =
1

n

n∑
i=1

2

(∫
|X − u|dP0(x)− δ0

)
+ oP (n

−1/2)

However, the more appropriate estimator, and the estimator that is actually equivalent to δn = ∆(Pn)
would be the U -statistic

Un :=

(
n

2

) n∑
i=1

∑
i<j

|Xi −Xj |

Which by a linearization argument has the same influence function as the V-statistic

ϕP0(x) = 2

(∫
|x− u|dP0(u)− δ0

)
By asymptotic linearity large sample asymptotic distribution of δn is normal with variance given by the
variance of the influence function

√
n(δn − δ0)⇝ N

(
0, 4E

[(∫
|x− u|dP0(u)− δ0

)2
])

≡ N

(
0, 4

[
E

[(∫
|x− u|dP0(u)

)2
]
− δ20

])

(b) Define the following parameter, the Gini Index

Ψ(P ) :=
EP |X1 −X2|

2EP (X)

We can show Ψ(Pn) is asymptotically linear for Ψ0 by using the delta method for asymptotic linear
estimators. We lay out the following ingredients that will be useful in our calculation
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(a) ϕ1(x) = 2 (E0|X − x| −∆(P0)) (part (a)

(b) ϕ2(x) = (x− µ0)

(c) ∂Ψ(P0)
∂EP |X1−X2| =

1
2µ0

(d) ∂Ψ(P0)
∂µ0

= −EP |X1−X2|
2µ2

0

From the delta method for ALEs we have

ϕ̃(x) = ⟨∇f(Ψ(P0)), ϕP0⟩

=

〈(
1

2µ0
,−EP |X1 −X2|

2µ2
0

)
, (2 (E0|X − x| −∆(P0)) , (x− µ0))

〉
=

2 (E0|X − x| −∆(P0))

2µ0
− (x− µ0)EP |X1 −X2|

2µ2
0

=
2µ0 (E0|X − x| −∆(P0))

2µ2
0

− (x− µ0)EP |X1 −X2|
2µ2

0

=
2µ0 (E0|X − x| −∆(P0))

2µ2
0

− (x− µ0)∆(P0)

2µ2
0

=
2µ0 (E0|X − x|)− (µ0 + x)∆(P0)

2µ2
0

=
E0|X − x| − (µ0 + x)ψ0

µ0

(c) Next, consider the submodel M0 = {P ∈ M : EP (X) = µ0} for some known µ0. Derive the tangent
space TM0(P0).
The following model just imposes a moment restriction P0(g0) = 0 where g0(x) = x − µ0. We can
determine the form of the tangent space by exploring this constraint along a linear submodel of the
form pθ(x) = [1 + θh]p0(x).∫

g0[1 + θh]f0dx = 0

=⇒ ����:0E0[g0] + θE0[g0h] = 0

=⇒ E0[(x− µ0)h] = 0 =⇒ E0[xh] = 0 (Recalling scores mean-0)

(d) Consider the model P0 ∼ Exp(1) with density exp(−x)I(0 < x <∞). Using the fact that E0|X − x| =
2e−x + x − 1, determine if the influence function of ψn is an element of the tangent space of the re-
stricted model TM0

.

Step 1 is to see if ϕ0(x) lives in L2
0(P0). First we write some useful facts

(a) E[X] = 1 by properties of Exponential.

(b) E(Ψ(P0)) = E
[
EP |X1−X2|

2EP (X)

]
= 1

2 by properties of Exponential.

(c) E0|X − x| = 2e−x + x− 1 (given in problem)

Therefore,

E[ϕ0(x)] =
∫ ∞

0

2e−xe−xdx+ E0[X]− 1− (E0[X] + 1)E(Ψ0)

=

∫
Exp(2)dx+ 1− 1 + (2)E[Ψ0]

=

∫
1− 2

1

2
= 0
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Step 2 is verify that E[xϕ0(x)] = 0, which proves that the influence function lives in the tangent space.

E[xϕ0(x)] =
∫ ∞

0

x2e−xe−xdx+ E0[X
2]− E0[X]− (E0[X

2] + E0[X])E(Ψ0)

= E0[Y ]︸ ︷︷ ︸
(2)

dx+ 1− 1 + (2)E[Ψ0]

=

∫
1− 2

1

2
= 0

Thus, ϕ0 is in the tangent space under the model with the moment restriction: TM0
.
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Example 1.27 (Difference in Conditional Mean estimators are ALE (P5 Theory Exam 2020)). Suppose
there are n iid draws (Ai, Yi) from P0 where Ai = {0, 1} and P0(A = 1) = 0.5. We wish to contrast

ψ0 = EP0(Y |A = 1)− EP0(Y |A = 0)

Consider the following two estimators

ψ1n =

∑n
i=1AiYi∑n
i=1Ai

−
∑n
i=1(1−Ai)Yi∑n
i=1(1−Ai)

ψ2n = 2

[
1

n

n∑
i=1

AiYi −
1

n

n∑
i=1

(1−Ai)Yi

]

1. Show both estimators are unbiased and consistent. We demonstrate both conditions first for ψ1n. We
focus on the first term and the second holds WLOG:

E
[∑n

i=1AiYi∑n
i=1Ai

]
= E

[
E
[∑n

i=1AiYi∑n
i=1Ai

∣∣∣A = 1

]]
= E

[∑n
i=1 E[Y |A = 1]

n

]
= E[Y |A = 1]

To prove consistency, we note that WLLN yields 1
n

∑n
i=1AiYi

p→ 1
2E[Y |A = 1], 1

n

∑n
i=1Ai

p→ 1
2 ,

implying by the continuous mapping theorem that
∑n

i=1 AiYi∑n
i=1 Ai

p→ E[Y |A = 1].

To show ψ2n is unbiased and consistent

E

[
2

[
1

n

n∑
i=1

AiYi

]]
= 2E[AY ] = 2E[AE[Y |A = 1]] = E[Y |A = 1]

Consistency follows from the WLLN and CMT.

2. Derive the large sample distributions of
√
n(ψ1n − ψ0) and

√
n(ψ2n − ψ0). Which has the smaller

asymptotic variance?
To solve this question we apply the delta method for ALEs. IN the case of ψ1n, we consider the following
function f(a, b, c, d) = a

b −
c
d and the following estimators with the following influence functions

1

n

n∑
i=1

AiYi ϕ1 = ay − 0.5E[Y |A = 1]

1

n

n∑
i=1

Ai ϕ2 = a− 0.5

1

n

n∑
i=1

(1−Ai)Yi ϕ3 = (1− a)y − 0.5E[Y |A = 0]

1

n

n∑
i=1

(1−Ai) ϕ2 = (1− a)− 0.5

Applying the delta method for ALEs yields the influence function for ψ1n

ϕ̃1 = ⟨∇f(ψ0), ϕP0⟩

=
ay − 0.5E[Y |A = 1]

0.5
− (a− 0.5)0.5E[Y |A = 1]

0.25

− (1− a)y − 0.5E[Y |A = 0]

0.5
− ((1− a)− 0.5)0.5E[Y |A = 0]

0.25
= 2 [a(y − E[Y |A = 1])]− 2 [(1− a)(y − E(Y |A = 0))]
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To solve for the influence function of ψ2n we’ll note the estimator is linear so it has influence function

ϕ̃2 = 2(ay − 0.5E[Y |A = 1])− 2 ([(1− a)y − 0.5E[Y |A = 0]])

Asymptotic linearity ensures both distributions will be asymptotically normal with variance equal to the
variance of the influence function. Let’s compare the asymptotic variances

Var(ϕ̃1) = 4Var(a(y − E[Y |A = 1])− (1− a)(y − E(Y |A = 0)))

= 4E[A2(Y − E[Y |A = 1])2 + (1−A)2(Y − E(Y |A = 0))2]

= 2 [Var(Y |A = 1) +Var(Y |A = 0)]

Var(ϕ̃2) = 4Var((ay − 0.5E[Y |A = 1])− ((1− a)y − 0.5E[Y |A = 0]))

= 4E((ay)2 + (1− a)2y2) (Ignore constants)

= 2(E[Y 2|A = 1] + E[Y 2|A = 0])

Note that the variance is upper bounded by the second moments. Therefore Var(ψ̃1) < Var(ψ̃2).

3. We can construct a 95% asymptotic confidence interval for ψ0 using ψ1n.

ψ1n ± 2z1−α/2

√
2×

√∑n
i=1 Ai

(
Yi−

∑n
j=1

AjYj∑n
j=1

Aj

)2

∑n
i=1 Ai

+

∑n
i=1(1−Ai)

(
Yi−

∑n
j=1

(1−Aj)Yj∑n
j=1

(1−Aj)

)2

∑n
i=1(1−Ai)

n

Where the things in parentheses are the plugin formulas for the conditional variances.

4. Show that the asymptotic covariance between
√
n(ψ1n−ψ0) and

√
n(ψ2n−ψ0) is equal to the variance

of
√
n(ψ1n − ψ0).

E[ϕ̃1 · ϕ̃2] = 4E[(AY )2 −A2E[Y |A = 1]Y − 0.5AY E[Y |A− 1] + 0.5AE[Y |A = 1]2]

+ 4E[((1−A)Y )2 − (1−A)2E[Y |A = 0]Y − 0.5(1−A)Y E[Y |A− 1] + 0.5(1−A)E[Y |A = 0]2]

= 4
(
0.5E[Y 2|A = 1]− 0.5E[Y |A = 1]2 − 0.25E[Y |A = 1] + 0.25E[Y |A = 1]

)
+ 4

(
0.5E[Y 2|A = −]− 0.5E[Y |A = 0]2 − 0.25E[Y |A = 0] + 0.25E[Y |A = 0]

)
= 2Var(Y |A = 1) + 2Var(Y |A = 0)

34



Ethan Ashby Theory Exam Example Problems 2022-2023 Academic Year

1.7 Efficiency Theory and Efficient Estimators

Example 1.28 (Efficient Estimators Under Moment Restriction (P7 Theory Exam 2021)). Suppose X1, . . . , Xn
iid∼

P0 ∈ M where M is the nonparametric model of each distribution P satisfying Pf20 < ∞ with support in
(−B,+B) for a fixed f0. Suppose we wish to estimate the mean of f0: ψ0 = P0f0.

Consider a multivariate g0 : Rm → R that is bounded and consider the model containing the collection of
distributions with the moment restriction based on the multivariate function M0 := {P ∈M : Pmg0 = 0}.

The tangent space of M0 at P is given by

TM0
(P ) := {h ∈ L2

0(P ) :

∫
h(x)ḡP (X)dP (x) = 0}

Where ḡP = Pm−1g0.

(a) Derive form of projection onto tangent space. Consider an arbitrary element s∗ ∈ L2
0(P ). The

projection Π(s|TM ) onto the tangent space satisfies the following property.

⟨s−Π(s|TM ), aḡp(X)⟩ = 0

This property ensures that the set of allowable scores s−Π(s|TM ) satisfies the desired moment restric-
tion. Note that the model space is a linear span, so Π(s|TM ) is given by

a = argmin
a

||s− aḡp||2L2(P )

=⇒ ∂

∂a

[
P (s2)− 2aP (sḡp) + a2P (ḡ2p)

]
= 0

=⇒ a∗ =

∫
sḡP dP∫
ḡ2P dP

Taken together implying the form of the projection onto the tangent space is

s∗ = s(x)− a∗ḡp

= s(x)−
∫
sḡP dP∫
ḡ2P dP

ḡp

The last condition we need to check is that s∗ actually lives in the tangent space. To verify this∫
s∗(x)ḡP (x)dP (x) =

∫ (
s(x)−

∫
sḡP dP∫
ḡ2P dP

ḡP

)
ḡP (x)dP (x)

=

∫
(sḡP (x)− sḡP )dP = 0

(b) Canonical gradient: Note that ψ0 has nonparametric influence function ϕ(x) = f0(x) − ψ0 where
µ0 := E[X]. Using the fact above, we have that the canonical gradient/EIF is obtained by projecting
ϕ(x) onto TM .

ϕ∗(x) = f0(x)− ψ0 −
∫
(f0(x)− ψ0)ḡP dP∫

ḡ2P (x)dP
ḡp(x)

= f0(x)− ψ0 −
∫
f0(x)ḡP dP −�����: 0∫

ψ0ḡP dP∫
ḡ2P (x)dP

ḡp(x)

= f0(x)− ψ0 −
∫
f0(x)ḡP dP∫
ḡ2P (x)dP

ḡp(x)

Where the cancellation occurred because
∫
ḡP dP = 0 in M0.
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(c) Efficient One-Step Estimator: an asymptotically efficient estimator in M0 can be obtained by
taking the plug-in estimator and adding the empirical mean of the EIF.

ψ∗(Pn) = ψ(Pn) + Pnϕ
∗(x)

= Pnf0(Xi) +
����������:0

Pn(f0(Xi)− ψ(Pn))− Pn

(
Pn(f0(X)Pm−1

n g0)

Pn(P
m−1
n g0)2

Pm−1
n g0

)
= Pnf0(Xi)−

Pn(f0(X)ḡn)

Pn(ḡn)2
Pn(P

m−1
n g0)

Let’s inspect the last term. Recognizing g0 is P0-mean-zero, by linearization we have:

Pmn g0 = (Pmn − Pm0 )g0

= m(Pn − P )ḡP (x) + oP (n
−1/2) = mPnḡP (x) + oP (n

−1/2)

=⇒ PnḡP =
Pmn g0
m

Substituting in the original expression, we have an

ψ∗(Pn) = Pnf0(Xi)−
1

m

Pn(f0(X)ḡn)

Pn(ḡn)2
Pmn g0

Which is the efficient one-step estimator.

(d) Example: If E[(X − µ0)
3] = 0, show the sample mean is efficient for the population mean in a

population with known variance.
We know the sample mean PnX has nonparametric influence function of ϕ(x) = x− µ0. To show it is
efficient in M0, we must show that the second term in the EIF derived above is 0. Define g0(x1, x2) =
1
2 (x1 − x2)− σ2 (known) such that P 2g0 = 0.∫

(x1 − µ0)

[∫
1

2
(x1 − x2)

2 − σ2dP (x2)

]
dP (x1)

=

∫
(x1 − µ0)

[∫
1

2
((x1 − µ0)− (x2 − µ0))

2dP (x2)

]
dP (x1)

�����������:0

−σ2

∫
(x1 − µ0dP (x1)

=
1

2

∫ ∫
(x1 − µ0)

(x1 − µ0)
2 −

����������:0

2(x1 − µ0)(x2 − µ0) + (x2 − µ0)
2

 dP (x1)dP (x2)

=
1

2

∫ (x1 − µ0)
3dP (x1) +

∫ 
�

���
��*

0∫
(x1 − µ0)dP1(x1)

 (x2 − µ0)
2dP (x2)


= 0

Where the last step holds because E[(X −µ0)
3] = 0. Thus, the nonparametric influence function equals

the EIF under this model, so the sample mean is efficient for the population mean.
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Example 1.29 (Gateaux Derivatives and Functional Delta Method (583 Final Problem 2)). Suppose

X1, . . . , Xn
iid∼ P0 with support on 0 < [a, b] < ∞. We are interested in estimating the harmonic mean

parameter

Ψ(F ) :=
1∫

1
udF (u)

1. Calculate the Gateaux derivative of the functional.

d

dϵ
Ψ(F + ϵh)

∣∣∣
ϵ=0

=
d

dϵ

[∫
1

u
d(F + ϵh)(u)

]−1 ∣∣∣
ϵ=0

= −
∫

1

u
dh(u)

[∫
1

u
d(F + ϵh)(u)

]−2 ∣∣∣
ϵ=0

= −[Ψ(F0)]
2

∫
1

u
dh(u)

2. Show r(Fn − F0) = oP (n
−1/2) where r(h) is given by

r(h) = Ψ(F0 + h)−Ψ(F0)− Ψ̇(F0;h)

We could do this by showing the parameter is Hadamard differentiability of Ψ. But we pursue a more
simple approach. Letting h = Fn − F0 we have

r(Fn − F0) = Ψ(Fn)−Ψ(F0)− Ψ̇(F0;Fn − F0)

Let’s invoke a Taylor expansion about Ψ(F0) on the first two terms

Ψ(Fn)−Ψ(F0) ≈ Ψ̇(F0;Fn − F0)

=

[
P0

(
1

X

)]−2

(Pn − P0)

(
1

X

)
+O

((
(Pn − P0)

(
1

X

))2
)

Notice that since the function 1/X is monotone and bounded, it is in a Donsker class and therefore
||(
√
n(Pn − P0)(1/X))2|| = OP (1), implying the term above is O(n−1) or oP (n

−1/2). Therefore the
desired result holds

Ψ(Fn)−Ψ(F0)− Ψ̇(F0;Fn − F0) = oP (n
−1/2)

3. Now we can apply the functional delta method to prove that Ψ(Fn) is an asymptotically linear function
with influence function

Ψ̇(F0; δ(x)− F0) = −[Ψ(F0)]
2

∫
1

X
d(δ(x)− F0)

= −[Ψ(F0)]
2

(
1

x
− EP0

[
1

X

])
4. To develop a 95% asymptotically valid confidence interval for the harmonic mean Ψ(F0), we create a

confidence interval using the plug-in estimator with a consistent estimator for the variance

Ψ(Fn)± z1−α/2

√
V̂ar(Ψ̇)

n

V̂ar(Ψ̇) := Ψ(Fn)
−4 · 1

n

n∑
i=1

 1

Xi
−

 1

n

n∑
j=1

1

Xj

2
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